Matrix - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (7)

Ergebnis der Suche nach: (Freitext: MATRIX)

Es wurden 119 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
61 bis 70
  • Civics Online

    Civics Online provides a rich array of multi-media primary sources, and ideas on using those sources in the classroom (MATRIX 2009).

    Details  
    { "HE": "DE:HE:783374" }

  • Determinante berechnen bei 4x4-Matrizen | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010199" }

  • Determinante berechnen bei 4x4-Matrizen, Beispiel 3 | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010202" }

  • Determinante berechnen bei 4x4-Matrizen, Beispiel 1 | M.04.03

    Leider gibt es keine gute Möglichkeit Determinanten von Matrizen größer als 3x3 zu berechnen. Bei 4x4-Matrizen (oder größeren Matrizen) muss man die „Determinante entwickeln“. Dafür führt man die Determinante immer auf mehrere Determinanten der nächst kleineren Matrix zurück (Die Determinanten einer 4x4 Matrix führt man auf vier Det. einer 3x3-Matrix zurück, die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010200" }

  • Grenzmatrix, stationäre Matrix; Beispiel 1 | M.07.04

    Überlässt man eine Population für lange Zeit sich selbst, pendelt sich meist eine „Endverteilung“ ein. Diese langfristige Entwicklung einer Population wird durch die „Grenzmatrix“ oder „stationäre Matrix“ beschrieben. Die Grenzmatrix zeichnet sich dadurch aus, dass sie aus lauter gleichen Spalten besteht. Es gibt zwei Arten sie zu berechnen: Möglichkeit 1. Mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010251" }

  • Grenzmatrix, stationäre Matrix; Beispiel 3 | M.07.04

    Überlässt man eine Population für lange Zeit sich selbst, pendelt sich meist eine „Endverteilung“ ein. Diese langfristige Entwicklung einer Population wird durch die „Grenzmatrix“ oder „stationäre Matrix“ beschrieben. Die Grenzmatrix zeichnet sich dadurch aus, dass sie aus lauter gleichen Spalten besteht. Es gibt zwei Arten sie zu berechnen: Möglichkeit 1. Mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010253" }

  • Grenzmatrix, stationäre Matrix; Beispiel 2 | M.07.04

    Überlässt man eine Population für lange Zeit sich selbst, pendelt sich meist eine „Endverteilung“ ein. Diese langfristige Entwicklung einer Population wird durch die „Grenzmatrix“ oder „stationäre Matrix“ beschrieben. Die Grenzmatrix zeichnet sich dadurch aus, dass sie aus lauter gleichen Spalten besteht. Es gibt zwei Arten sie zu berechnen: Möglichkeit 1. Mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010252" }

  • Grenzmatrix, stationäre Matrix | M.07.04

    Überlässt man eine Population für lange Zeit sich selbst, pendelt sich meist eine „Endverteilung“ ein. Diese langfristige Entwicklung einer Population wird durch die „Grenzmatrix“ oder „stationäre Matrix“ beschrieben. Die Grenzmatrix zeichnet sich dadurch aus, dass sie aus lauter gleichen Spalten besteht. Es gibt zwei Arten sie zu berechnen: Möglichkeit 1. Mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010250" }

  • Mehrdimensionale Funktion: Extrempunkte berechnen, Beispiel 3 | A.51.02

    Extrempunkte einer mehrdimensionalen Funktion berechnet man (wie bei einfachen Funktionen auch), indem man die erste Ableitung Null setzt. Bei mehrdimensionalen Funktionen gibt es nicht EINE erste Ableitung mit einer Unbekannten, sondern mehrere (partielle) erste Ableitungen mit mehreren Unbekannten, so dass man immer mehrere Gleichungen mit mehreren Unbekannten lösen muss. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009663" }

  • Determinante berechnen bei 3x3-Matrizen, Beispiel 3 | M.04.02

    Determinante bei 3x3-Matrizen: Man schreibt die erste und zweite Spalte der Matrix noch einmal hinter die Matrix. Nun sieht man drei Hauptdiagonalen (beginnen links oben, enden rechts unten) und drei Nebendiagonalen (beginnen links unten, enden rechts oben). Von jeweils einer Hauptdiagonalen multipliziert man die Einträge und addiert die Ergebnisse, danach multipliziert man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010198" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite