Matrix - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (5)

Ergebnis der Suche nach: (Freitext: MATRIX)

Es wurden 119 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Wirtschaftsmatrizen R-Z-E: Zusammenhang zwischen den Matrizen, Beispiel 3 | M.05.01

    Es gibt nur eine einzige Formel die den Zusammenhang zwischen den Matrizen der wirtschaftlichen Anwendungen beschreibt: (RZ)*(ZE)=(RE). Benötigt man die (RZ)-Matrix, muss man die Formel umstellen zu: (RZ)=(RE)*(ZE)^-1. Benötigt man die (ZE)-Matrix, wird die Formel umgestellt zu: (ZE)=(RZ)^-1*(RE).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010207" }

  • Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren | M.02.05

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010154" }

  • Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 1 | M.02.05

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010155" }

  • Matrix lösen: unendlich viele Lösung mit Gauß-Verfahren, Beispiel 2 | M.02.05

    Um die Lösung einer Matrix zu erhalten, wendet man natürlich das Gauß-Verfahren an. Wenn man bei einem Gleichungssystem weniger Gleichungen als Unbekannte hat (es also zwei oder noch weniger Zeilen gibt wie Spalten) oder man in der Diagonale eine Null erhält, erhält man (meist) „unendlich viele Lösungen“ (auch „mehrdeutige Lösung“ genannt). Man wählt nun für eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010156" }

  • Kerncurriculum gymnasiale Oberstufe

    gymnasiale Oberstufe Kerncurriculum Bildungsstandards und Inhaltsfelder Umsetzungsbeispiele Matrix

    Details  
    { "HE": [] }

  • Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil c | M.06.03

    Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010230" }

  • Populationsmatrizen, Beispiel 3 | M.07.01

    Wenn die Populationsmatrix nicht gegeben ist, muss man natürlich die Populationsmatrix erstellen. Dazu sollte man wissen, wie eine Populationsmatrix gelesen wird (also die anschauliche Bedeutung der Matrix kennen). Die Spalten der Matrix sagen aus, in was sich die Individuen eines Stadiums umwandeln. Bsp. Die erste Zahl der ersten Spalte sagt aus, wieviel Prozent der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010241" }

  • Populationsmatrizen | M.07.01

    Wenn die Populationsmatrix nicht gegeben ist, muss man natürlich die Populationsmatrix erstellen. Dazu sollte man wissen, wie eine Populationsmatrix gelesen wird (also die anschauliche Bedeutung der Matrix kennen). Die Spalten der Matrix sagen aus, in was sich die Individuen eines Stadiums umwandeln. Bsp. Die erste Zahl der ersten Spalte sagt aus, wieviel Prozent der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010238" }

  • Wirtschaftsmatrizen R-Z-E: kurze Erklärung | M.05

    Bei sogenannten wirtschaftlichen Anwendungen geht es immer um eine Firma, die Rohstoffe kauft, diese zu Zwischenprodukten umwandelt und diese wiederum zu Endprodukten. Die Übergänge werden durch Wirtschaftsmatrizen beschrieben. Die (RZ)-Matrix beschreibt den Übergang von Rohstoffen zu Zwischenprodukten, die (ZE)-Matrix den Übergang von Zwischenprodukten zu Endprodukten und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010203" }

  • Leontief: schwierige Aufgabe mit Gozintograph und Input-Matrix, Teil b | M.06.03

    Eine Leontief–Aufgabe, die einfach beginnt und komplex endet. Zuerst haben wir eine Grafik (die „Gozintograph“ heißt). Daraus erstellen wir eine Input-Output-Tabelle, aus welcher wir wiederum die Input-Matrix berechnen. Danach berechnen wir aus einem Marktvektor den Produktionsvektor. In Teilaufgabe 3 haben wir viele verschiedene Angaben, aus denen wir dann Kosten und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010229" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite