Logarithmus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (8)
Ergebnis der Suche nach: (Freitext: LOGARITHMUS)
Es wurden 144 Einträge gefunden
- Treffer:
- 71 bis 80
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 4 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009558" }
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 2 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009556" }
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 1 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009555" }
-
Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.08
Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009438" }
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 3 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009557" }
-
Analysis 4 | die verschiedenen Funktionstypen, ihre Besonderheiten und wie man mit ihnen rechnet
Wie der Kapitelname schon vermuten lässt, betrachten wir hier die verschiedenen Funktionstypen mit ihren Besonderheiten. Speziell gehen wir auf sechs Funktionstypen ein: 1.Exponentialfunktionen (e-Funktionen), 2.Trigonometrische Funktionen (sin oder cos), 3.Gebrochen-rationale Funktionen (Bruch-Funktionen), 4.Logarithmus-Funktionen, 5.Wurzelfunktionen, 6.Ganzrationale ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009387" }
-
Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 2 | A.41.08
Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009437" }
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 5 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009559" }
-
Schaubild einer Logarithmusfunktion erstellen, Beispiel 5 | A.44.07
ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009571" }
-
ln-Funktion (Mathematik)
Die ln-Funktion (auch natürlicher Logarithmus) ist die Umkehrfunktion der e-Funktion.
Details { "DBS": "DE:DBS:55982" }