Logarithmus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (7)
Ergebnis der Suche nach: (Freitext: LOGARITHMUS)
Es wurden 144 Einträge gefunden
- Treffer:
- 61 bis 70
-
Ableitung von komplizierten Logarithmusfunktionen | A.44.03
Für besonders hässliche Ableitungen braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer gehts immer.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009546" }
-
Logarithmusfunktion: Definitionsmenge bestimmen | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009538" }
-
Formelsammlung Mathe für Schüler
Eine übersichtliche mathematische Formelsammlung für Schüler. Die Formeln sind in den Kategorien Grundrechenarten (und Vorzeichen), Bruchrechnen, Potenzen, Funktionen, Logarithmus und Ableitungen geordnet.
Details { "DBS": "DE:DBS:46217" }
-
Ableitung von komplizierten Logarithmusfunktionen, Beispiel 1 | A.44.03
Für besonders hässliche Ableitungen braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer gehts immer.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009547" }
-
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 1 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009539" }
-
Logarithmusfunktion: Definitionsmenge bestimmen, Beispiel 2 | A.44.01
Bei jeder Logarithmusfunktion ist die Definitionsmenge wichtig. Die Definitionsmenge bestimmt man, in dem man das Argument (die Klammer) größer Null setzt und nach x auflöst.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009540" }
-
Ableitung von komplizierten Logarithmusfunktionen, Beispiel 2 | A.44.03
Für besonders hässliche Ableitung braucht man normalerweise noch die Kettenregel, die Produktregel und eventuell noch die Quotientenregel. Schlimmer gehts immer.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009548" }
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 1 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009555" }
-
Logarithmusfunktion: Gleichungen lösen, Beispiel 5 | A.44.05
Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch x oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009559" }
-
Asymptoten von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.08
Falls es sich bei der Funktion um einen Bruch handelt, muss man eventuell senkrechte Asymptoten in Betracht ziehen. Dieses geschieht indem man den Nenner Null setzt. Das Gleiche gilt, falls in der e-Funktion noch zusätzlich ein Logarithmus auftaucht. Das Argument des Logarithmus wird Null gesetzt, die Lösung ist wiederum eine senkrechte Asymptote. Grenzwerte, also ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009438" }