Logarithmus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (14)
Ergebnis der Suche nach: (Freitext: LOGARITHMUS)
Es wurden 144 Einträge gefunden
- Treffer:
- 131 bis 140
-
Funktionen Schaubildern zuordnen, Beispiel 3 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009211" }
-
Funktionen Schaubildern zuordnen, Beispiel 2 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009210" }
-
Funktionen Schaubildern zuordnen | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009208" }
-
Funktionen Schaubildern zuordnen, Beispiel 4 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009212" }
-
Exponentialfunktion
Eine Exponentialfunktion ist eine Abbildung der Form f(x)=a^x . Sie werden oft gebraucht zur Modellierung von Wachstum und Zerfall.
Details { "DBS": "DE:DBS:56245" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 1 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009397" }
-
Definitionsmenge einer Funktion bestimmen, Beispiel 4 | A.11.05
Der Definitionsbereich oder die Definitionsmenge ist die Menge aller x-Werte, die man in eine Funktion einsetzen DARF. Die Definitionsmenge wirft Probleme auf, wenn der Nenner ein x enthält sowie bei Wurzeln und bei Logarithmen (dazu noch bei ein paar weniger wichtigen Funktionen). Nenner dürfen nicht Null werden, unter Wurzeln darf nichts Negatives stehen (speziell ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008642" }
-
Definitionsmenge einer Funktion bestimmen, Beispiel 5 | A.11.05
Der Definitionsbereich oder die Definitionsmenge ist die Menge aller x-Werte, die man in eine Funktion einsetzen DARF. Die Definitionsmenge wirft Probleme auf, wenn der Nenner ein x enthält sowie bei Wurzeln und bei Logarithmen (dazu noch bei ein paar weniger wichtigen Funktionen). Nenner dürfen nicht Null werden, unter Wurzeln darf nichts Negatives stehen (speziell ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008643" }
-
Definitionsmenge einer Funktion bestimmen, Beispiel 2 | A.11.05
Der Definitionsbereich oder die Definitionsmenge ist die Menge aller x-Werte, die man in eine Funktion einsetzen DARF. Die Definitionsmenge wirft Probleme auf, wenn der Nenner ein x enthält sowie bei Wurzeln und bei Logarithmen (dazu noch bei ein paar weniger wichtigen Funktionen). Nenner dürfen nicht Null werden, unter Wurzeln darf nichts Negatives stehen (speziell ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008640" }
-
Definitionsmenge einer Funktion bestimmen, Beispiel 1 | A.11.05
Der Definitionsbereich oder die Definitionsmenge ist die Menge aller x-Werte, die man in eine Funktion einsetzen DARF. Die Definitionsmenge wirft Probleme auf, wenn der Nenner ein x enthält sowie bei Wurzeln und bei Logarithmen (dazu noch bei ein paar weniger wichtigen Funktionen). Nenner dürfen nicht Null werden, unter Wurzeln darf nichts Negatives stehen (speziell ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008639" }