Logarithmus - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (13)
Ergebnis der Suche nach: (Freitext: LOGARITHMUS)
Es wurden 144 Einträge gefunden
- Treffer:
- 121 bis 130
-
Potenzgesetze
Die Potenzgesetze zeigen, wie sich Potenzen verhalten, wenn man sie multipliziert, dividiert oder mehrfach potenziert.
Details { "DBS": "DE:DBS:56107" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 5 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009401" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009396" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 6 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009402" }
-
Funktionen Schaubildern zuordnen, Beispiel 5 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009213" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 2 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009398" }
-
Umkehrfunktion berechnen, Beispiel 4 | A.28.01
Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach x auf. Hat man das getan, kann man das bisherige x nun y nennen, das bisherige y nennt man x und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009234" }
-
Nullstellen von komplizierten Exponentialfunktionen berechnen, Beispiel 3 | A.41.02
Bei nicht so ganz einfachen Exponentialgleichungen kann man eigentlich nur ausklammern (den Satz vom Nullprodukt anwenden) oder substituieren. Eventuell muss man auch zuerst mit dem Nenner multiplizieren und erst dann Substitution anwenden,
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009399" }
-
Mathe-Grundlagen | Potenzregeln, Wurzeln, Ausklammern, binomische Formel verständlich erklärt
Potenzregeln, Wurzeln, Ausklammern, binomische Formel, wer kann diese Basisumfomungen noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier (fast) jede Grundlagenrechnung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009785" }
-
Funktionen Schaubildern zuordnen, Beispiel 6 | A.27.02
Eine wichtige Aufgabe ist oft, Schaubildern ihre Funktionen zuzuordnen. Meist sieht es so aus, dass man mehrere Schaubilder gegeben hat, mehrere Funktionsgleichungen gegeben und nun muss man die Funktionsgleichungen den Schaubildern zuordnen. Es hilft unheimlich die Schaubilder der Standardfunktionen zu kennen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009214" }