Kehrwert - Unterrichtsmaterial

Ergebnis der Suche nach: (Freitext: KEHRWERT)

Es wurden 65 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite

Treffer:
41 bis 50
  • Parallelität von Geraden | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008367" }

  • Häufige Fehler

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Mit ein bisschen Übung sind die meisten Fehler in der Mathematik vermeidbar. Hier finden Sie eine Liste mit häufigen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004434" }

  • Parallelität von Geraden, Beispiel 4 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008371" }

  • Parallelität von Geraden, Beispiel 2 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008369" }

  • Parallelität von Geraden, Beispiel 3 | A.02.06

    Sind zwei Geraden parallel, so haben sie die gleiche Steigung. Stehen zwei Geraden senkrecht aufeinander, so ist die Steigung der einen der negative Kehrwert der anderen Steigung. (Also wenn die eine Steigung 5 ist, so ist die andere Steigung -1/5). Man nennt die Steigungen dann auch „negativ reziprok“.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008370" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009075" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 5 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009080" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 2 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009077" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 4 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009079" }

  • Schnittwinkel zwischen Funktionen, die sich berühren bzw. schneiden, Beispiel 3 | A.22.01

    Bei der gegenseitigen Lage von zwei Funktionen (gilt natürlich auch für Lage von Funktion und Gerade) sind zwei Fälle besonders interessant und tauchen häufig auf. In beiden Fällen kann man zwei Gleichungen aufstellen (so dass in der Aufgabe zwei Unbekannte auftauchen können). Erstens: beide Funktionen berühren sich. In diesem Fall sind y-Werte und Steigungen gleich. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009078" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 Eine Seite vor Zur letzten Seite