Hyperbel - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen
Ergebnis der Suche nach: (Freitext: HYPERBEL)
Es wurden 25 Einträge gefunden
- Treffer:
- 1 bis 10
-
Hyperbel / Hyperbeln berechnen, Beispiel 1 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008590" }
-
Hyperbel / Hyperbeln berechnen, Beispiel 5 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008594" }
-
Hyperbel / Hyperbeln berechnen | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008589" }
-
Hyperbel / Hyperbeln berechnen, Beispiel 2 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008591" }
-
Hyperbel / Hyperbeln berechnen, Beispiel 6 A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008595" }
-
Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008592" }
-
Hyperbel / Hyperbeln berechnen, Beispiel 4 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008593" }
-
Verschiebung der Hyperbel
Mithilfe dieses Arbeitsmaterials zum Thema Verschiebung der Hyperbel erkennen die Lernenden unter Verwendung eines Funktionsplotters, wie sich die Parameter d und c in gebrochenrationelen Funktionstermen der Form $$y={2/{x-d}}+c$$ auf den Verlauf des Graphen auswirken.
Details { "LO": "DE:LO:de.lehrer-online.wm_002057" }
-
Parabel, Hyperbel, Exponentialfunktion: wie man mit verschiedenen Funktionstypen rechnet | A.06
Von manchen Funktionstypen werden schon recht früh diverse Gesichtspunkte betrachtet. Von Parabeln (ganzrationale Funktionen), Hyperbeln und Exponentialfunktionen sind an dieser Stelle hauptsächlich Grenzwertbetrachtungen relevant (Limes) und das ungefähre Aussehen dieser Funktionen im Koordinatensystem. Dazu noch ein paar andere Kleinigkeiten.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008583" }
-
Dominoschlange "Verschiebung der Hyperbel"
Bei diesem Arbeitsmaterial zum Thema Verschiebung der Hyperbel handelt es sich um eine Kopiervorlage für ein Dominospiel aus dem Bereich Analysis, bei dem Funktionsgraphen und Funktionsterme von gebrochenrationalen Funktionen einander zugeordnet werden müssen.
Details { "LO": "DE:LO:de.lehrer-online.wm_002031" }