H��rfunk - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (5)
Ergebnis der Suche nach: (Freitext: H��RFUNK)
Es wurden 327 Einträge gefunden
- Treffer:
- 41 bis 50
-
Sinus und arcsin und wie man richtig damit rechnet, Beispiel 1 | T.01.04
Der Sinus ist eine sogenannte Winkelfunktion. Der Sinus ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Hypotenuse (H) nennt man Arkussinus (im ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010290" }
-
Cosinus und arccos und wie man richtig damit rechnet, Beispiel 2 | T.01.05
Der Kosinus ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Ankathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Ankathete (A) und Hypotenuse (H) nennt man Arkuscosinus (im Taschenrechner ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010296" }
-
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 3 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010334" }
-
Flächeninhalt Dreieck berechnen über A=1/2*g*h, Beispiel 2 | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010516" }
-
Kurzinformationen über den Hai
Kurzinformationen über den Hai finden Schülerinnen und Schüler online im kinder-tierlexikon.
Details { "Mauswiesel.HE": "DE:Mauswiesel.HE:1459893" }
-
kinder-tierlexikon.de - Der Hirschkäfer
Im kinder-tierlexikon.de finden Schülerinnen und Schüler Informationen über den Hirschkäfer.
Details { "Mauswiesel.HE": "DE:Mauswiesel.HE:1361357" }
-
Flächeninhalt Dreieck berechnen über A=1/2*g*h | V.05.06
Die Fläche eines Dreiecks kann man mit A=1/2*g*h berechnen. Die Grundlinie g berechnet man über Abstand Punkt-Punkt (z.B. von A zu B). Die Höhe im Dreieck berechnet man über Abstand Punkt Gerade (z.B. Punkt C zur Gerade AB). Beides in die Formel einsetzen und schon hat man den Flächeninhalt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010514" }
-
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche; Beispiel 1 | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010332" }
-
Proportionalität und Dreisatz
In diesem Lernvideo von echteinfach.tv werden verschiedene Arten von Dreisatzrechnungen präsentiert.
Details { "Select.HE": "DE:Select.HE:1561403" }
-
Zylinder berechnen: Zylindervolumen, Zylinderoberfläche, Mantelfläche | T.06.09
Ein Zylinder hat einen Kreis als Grundfläche und einen als Deckfläche. Wie jedes Prisma berechnet man das Volumen über Grundfläche mal Höhe. Die Oberfläche besteht aus zwei Kreisen und einer Mantelfläche, welche ein Rechteck ist. V=pi*r²*h, O=2*pi*r*(r+h)
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00010331" }