Grundlagen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (91)

Suche nach Grundlagen - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (91) (1934)

Kurvendiskussion Beispiel 2a: Ableitungen bestimmen | A.19.02
In dieser Funktionsuntersuchung passiert erst mal nichts Außergewöhnliches, außer dem Auftauchen dreifachen Nullstelle (= Sattelpunkt). Als „Bonbon“ bestimmen wir die Wendetangente und ergötzen uns an einer einfachen Flächenberechnung.
Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 5 | 14.05
Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt „Produktintegration“ oder auch „partielle Integration“. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.
Mathe-Grundlagen | Potenzregeln, Wurzeln, Ausklammern, binomische Formel verständlich erklärt
Potenzregeln, Wurzeln, Ausklammern, binomische Formel, wer kann diese Basisumfomungen noch? Theoretisch hat es jeder mal gelernt, aber die wenigsten wissen es noch. Wir wiederholen hier (fast) jede Grundlagenrechnung.
Schwerpunkt Dreieck, Mittelpunkt Strecke, Verbindungsvektor berechnen, Beispiel 1 | V.01.02
Den Mittelpunkt einer Strecke bestimmt man, in dem man die Endpunkte der Strecke zusammenzählt und durch 2 teilt. Den Schwerpunkt eines Dreiecks bestimmt man, in dem man die Koordinaten der Eckpunkte zusammenzählt und durch 3 teilt. Den Verbindungsvektor von einem Punkt zu einem zweiten Punkt stellt man auf, in dem man die Koordinaten des Anfangspunkt vom Endpunkt ...
Tangentengleichung / Normalengleichung bestimmen über Tangentenformel / Normalenformel, Beispiel 4
Die beste Möglichkeit, eine Tangentengleichung bzw. Normalengleichungen zu bestimmen, geht über die Tangentenformel bzw. Normalenformel. Zwar sehen die Formel etwas umständlicher aus, als y=m*x+b, jedoch kann man auch hässliche Aufgaben damit recht gut lösen.
Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 4 | A.16.02
Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).
Ausklammern aus Gleichungen, Beispiel 8 | A.12.03
Wenn man aus einer Gleichung irgendetwas ausklammern kann, dann macht man das immer! Nun wendet man den Satz vom Nullprodukt (SvN) an, d.h. man setzt Beides Null - sowohl den Term, den man ausgeklammert hat, als auch das, was übrig blieb. Man erhält zwei einfachere Gleichungen, die man nach „x“ auflöst.
p-q-Formel, Mitternachtsformel, Beispiel 9 | A.12.05
Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.
Parameterform, Parametergleichung | V.01.05
Um eine Ebene aufzustellen verwendet man drei Punkte. Den ersten Punkt verwendet man als Stützvektor (auch Ortsvektor oder Aufpunkt genannt). Dieser wird vorne hingeschrieben. Die beiden Richtungsvektoren (auch Spannvektoren genannt) erhält man, in dem man jeweils zwei Punkte von einander abzieht. Vor den Richtungsvektoren stehen immer Parameter ...
ARDUINO IN DER SCHULE - Kurzworkshop mit Arduino
Das Arduino in der Schule Programm beinhaltet Unterrichtsmaterial in Form einer PDF-Präsentation mit über 60 Folien, einen Leitfaden für Coaches, der zu jeder Folie der Präsentation Ziel, Fragen und Aufgaben bespricht und einen Ablaufplan. Die Schüler lernen die Grundlagen von Spannung und Strom, von Arduino und der Programmierung des Boards kennen.