Gauß, Carl Friedrich - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)

Ergebnis der Suche nach: (Freitext: GAUß und CARL und FRIEDRICH)

Es wurden 33 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Komplexe Zahlen addieren, multiplizieren, konjugieren | A.54.02

    Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum „Addieren“ sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum „Multiplizieren“ sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009726" }

  • Komplexe Zahlen dividieren und Kehrwert bilden, Beispiel 2 | A.54.04

    Das Teilen von komplexen Zahlen hängt von der Form ab. Sind die Zahlen in Polarkoordinaten gegeben, ist das Ganze sehr einfach [siehe Bsp.1 und Bsp.2]. Sind die Zahlen als kartesische Koordinaten gegeben, erweitert man IMMER mit dem komplex-Konjugierten des Nenners. Dabei ist es völlig egal, ob im Zähler eine „1“ steht oder eine andere komplexe Zahl. (Ob es also im eine ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009744" }

  • Komplexe Zahlen addieren, multiplizieren, konjugieren; Beispiel 1 | A.54.02

    Der Trick beim Addieren oder Multiplizieren von komplexen Zahlen besteht darin, die Zahlen vorher immer in die geschickte Form umzuwandeln. Zum „Addieren“ sollten die komplexen Zahlen immer eine kartesische Form haben (falls sie also in Polarform gegeben sind, umwandeln!). Zum „Multiplizieren“ sollten die komplexen Zahlen immer eine Polarform haben (falls sie also in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009727" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 4 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009739" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 5 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009740" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 3 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009738" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009737" }

  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 1 | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009724" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 6 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009741" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009735" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 Eine Seite vor Zur letzten Seite