Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (44)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 431 bis 440
-
Partialbruchzerlegung, Beispiel 6 | A.14.07
Beim Integrieren von Brüchen stößt man manchmal auf sehr hässliche Brüche. Eine Möglichkeit ist der Weg über die Partialbruchzerlegung. (Gehört NICHT zu den ganz einfachen Themen!!). Schritt 1) Falls die Hochzahl oben größer oder kleiner als die Hochzahl unten ist, vereinfacht man das Ganze über die Polynomdivision. Schritt 2) Man bestimmt die Nullstellen des ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008862" }
-
Uneigentliche Integrale berechnen, Beispiel 1 | A.18.05
Eine uneigentliches Integral ist einfach nur ein Integral einer Fläche, die unendlich lang und dünn ist. Eine der Grenzen ist daher meistens auch unendlich. Zur Schreibweise: Normalweise darf man unendlich nicht als Integralgrenze hinschreiben. Also schreibt man u (oder irgendeinen anderen Buchstaben) hin, lässt zum Schluss u gegen unendlich laufen und ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008957" }
-
Definitionsmenge einer Funktion bestimmen | A.11.05
Der Definitionsbereich oder die Definitionsmenge ist die Menge aller x-Werte, die man in eine Funktion einsetzen DARF. Die Definitionsmenge wirft Probleme auf, wenn der Nenner ein x enthält sowie bei Wurzeln und bei Logarithmen (dazu noch bei ein paar weniger wichtigen Funktionen). Nenner dürfen nicht Null werden, unter Wurzeln darf nichts Negatives stehen (speziell ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008638" }
-
Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 4 | A.14.06
Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008853" }
-
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 1 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008628" }
-
Wurzel ableiten; Brüche ableiten, Beispiel 3 | A.13.02
Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein x steht, sondern nur Zahlen und unten weder + noch , kann man x von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu x ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008771" }
-
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008627" }
-
Wurzel ableiten; Brüche ableiten, Beispiel 6 | A.13.02
Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein x steht, sondern nur Zahlen und unten weder + noch , kann man x von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu x ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008774" }
-
Gleichungen auf Normalform bringen, Beispiel 7 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008668" }
-
Gleichungen auf Normalform bringen, Beispiel 11 | A.12.01
Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008672" }