Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (42)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 411 bis 420
-
Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 2 | A.11.07
Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008652" }
-
Tangente außerhalb, Beispiel 1 | A.15.04
Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008886" }
-
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008627" }
-
Tangente außerhalb, Beispiel 5 | A.15.04
Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008890" }
-
Symmetrie einer Funktion über Verschieben beweisen, Beispiel 2 | 17.04
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008930" }
-
Substitution von Termen in Gleichungen, Beispiel 4 | A.12.06
Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch u, den anderen durch u² und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008724" }
-
Krümmungsradius und Bogenlänge einer Kurve bestimmen, Beispiel 1 | A.11.08
Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man hässlich auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008656" }
-
Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 1
Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009647" }
-
Tangente bestimmen über Tangentensteigung, Beispiel 3 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008867" }
-
Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 2 | A.11.02
Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008629" }