Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (39)

Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)

Es wurden 460 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite

Treffer:
381 bis 390
  • Gleichungen auf Normalform bringen, Beispiel 5 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008666" }

  • Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 6 | A.18.04

    Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008955" }

  • Wurzel ableiten; Brüche ableiten, Beispiel 3 | A.13.02

    Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein „x“ steht, sondern nur Zahlen und unten weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu „x“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008771" }

  • Monotonie und Monotonieverhalten einer Funktion bestimmen, Beispiel 3 | A.11.07

    Monotonie und Monotonieverhalten: Eine Funktion ist in einem bestimmten Intervall streng monoton steigend (bzw. streng monoton wachsend), wenn die erste Ableitung f´(x) überall positiv ist. Die Funktion ist streng monoton fallend (bzw. streng monoton abnehmend), wenn die Ableitung negativ ist. Falls es ein oder mehrere Punkte gibt, an denen die Funktion waagerecht verläuft ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008653" }

  • Mitternachtsformel, a-b-c-Formel, Beispiel 3 | A.12.04

    Mit der Mitternachtsformel (a-b-c Formel oder auch Lösungsformel) kann man eine quadratische Gleichung lösen, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Um die abc-Formel anwenden zu können, muss auf einer Seite der Gleichung immer „=0“ stehen. Je nach dem, ob die Diskriminante (der Term unter der Wurzel) positiv, negativ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008697" }

  • Substitution von Termen in Gleichungen, Beispiel 5 | A.12.06

    Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008725" }

  • Wurzel integrieren; Brüche integrieren, Beispiel 1 | A.14.02

    Viele Wurzeln und Brüche kann man so umschreiben, so dass die Ableitung wesentlich einfacher wird. Brüche: Wenn oben im Zähler kein „x“ steht, sondern nur Zahlen und unten im Nenner weder „+“ noch „–“, kann man „x“ von unten aus dem Nenner hoch in den Zähler bringen, indem man das Vorzeichen der Hochzahl wechselt. Wurzeln: man schreibt die Wurzel um, und zwar in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008822" }

  • Tangente bestimmen über Tangentensteigung | A.15.01

    Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält „b“. Für die fertige Geradengleichung der Tangente setzt man „m“ und „b“ ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008864" }

  • Mit Integration durch Substitution eine verkettete Funktion integrieren | A.14.06

    Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008849" }

  • Krümmung berechnen mit der 2. Ableitung der Funktionsgleichung f''(x) , Beispiel 1 | A.11.03

    Krümmung berechnen: Setzt man einen x-Wert in die zweite Ableitung f'(x) ein, kann man die Krümmung der Funktion berechnen in diesem Punkt. Ist das Ergebnis der zweiten Ableitung positiv, so handelt es sich um eine Linkskurve. Ist das Ergebnis negativ, so ist die Funktion rechtsgekrümmt. Bei anwendungsorientierten Funktionen hat f''(x) meist keine besondere ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008633" }

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite