Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (39)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 381 bis 390
-
Aus dem Schaubild einer ganzrationalen Funktion die Funktionsgleichung erstellen, Beispiel 2
Kann man aus dem Schaubild so viele Nullstellen ablesen, wie der Grad der Funktion ist, stellt man die Funktion einfach über die Linearfaktoren auf (siehe Kap.3.6.3). Kann man weniger Nullstellen ablesen, als der Grad ist, muss man, um die Funktionsgleichung zu erhalten, Hoch-, Tief-, Wendepunkte oder einfache, normale Punkte der Funktion ablesen und die Funktion über ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009648" }
-
Ableitung f(x) einer Funktion | A.13
Die Ableitung einer Funktion f(x) gibt die Steigung bzw. die Tangentensteigung an. Bei anwendungsbezogenen Aufgaben ist die Ableitung die Zunahme bzw. die Abnahme (je nach Vorzeichen). Es gibt drei wichtige Regeln für die Ableitung: Kettenregel, Quotientenregel, Produktregel. Mit allen kann man ableiten. Fast jeder Funktionstyp hat eine andere Ableitungsregel, d.h. man muss ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008760" }
-
Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 4 | A.18.04
Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008953" }
-
Tangente bestimmen über Tangentensteigung, Beispiel 6 | A.15.01
Eine einfache Möglichkeit, eine Tangente zu bestimmen ist die: Man berechnet zuerst die Tangentensteigung, indem man den x-Wert des Berührpunktes in die Ableitungsfunktion einsetzt. Nun setzt man noch den x-Wert und den y-Wert des Berührpunktes in die Geradengleichung y=m*x+b ein und erhält b. Für die fertige Geradengleichung der Tangente setzt man m und b ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008870" }
-
ET-Tutorials.de - Elektrotechnik verstehen durch VIDEO-Tutorials
Auf ET-Tutorials.de finden Schüler und Studenten technischer Fachrichtungen Lehrvideos, Aufgaben und Lösungsvideos zu den wichtigsten Teilen der elektrotechnischen Ausbildung. In 3-5 minütigen Kurzvideos werden die wesentlichen schul- und hochsculrelevanten Themen der Elektrotechnik vermittelt und durch Übungen vertieft.
Details { "DBS": "DE:DBS:51605" }
-
Substitution von Termen in Gleichungen, Beispiel 8 | A.12.06
Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch u, den anderen durch u² und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008728" }
-
Substitution von Termen in Gleichungen, Beispiel 12 | A.12.06
Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch u, den anderen durch u² und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008732" }
-
Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 6 | A.18.04
Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008955" }
-
Wurzel ableiten; Brüche ableiten, Beispiel 1 | A.13.02
Viele Wurzeln und Brüche kann man umschreiben und so die Ableitung vereinfachen. Brüche: wenn oben kein x steht, sondern nur Zahlen und unten weder + noch , kann man x von unten aus dem Nenner hoch in den Zähler bringen (indem man das Vorzeichen der Hochzahl wechselt). Wurzeln: man schreibt die Wurzel um in Klammer hoch 0,5. (Dritte Wurzeln werden zu x ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008769" }
-
Krümmungsradius und Bogenlänge einer Kurve bestimmen, Beispiel 1 | A.11.08
Die Bogenlänge einer Kurve und der Krümmungsradius einer Kurve werden durch recht hässliche Formeln bestimmt. Allerdings kann man hässlich auch so betrachten: man hackt das in Taschenrechner ein (auch wenn´s etwas länger dauert) und ist fertig. Zum Glück muss man mit diesen Formeln sonst nicht viel machen. Wenn man mit dem Taschenrechner umgehen kann, ist das Ganze ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008656" }