Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (16)

Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)

Es wurden 458 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite

Treffer:
151 bis 160
  • So leitet man vermischte Funktionen ab | A.13.07

    In den bisherigen Kapiteln haben wir hauptsächlich Polynome („normale“ Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008803" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 1 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008762" }

  • Polynom bzw. ganzrationale Funktion ableiten, Beispiel 2 | A.13.01

    Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das „x“, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008763" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2e: Schnittpunkt berechnen

    Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008582" }

  • Mit der Kettenregel eine verkettete Funktion ableiten | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008775" }

  • Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 2 | A.05.07

    Wir betrachten eine kubische Funktion und machen davon eine Funktionsuntersuchung (=Kurvendiskussion). Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und lassen dadurch die kosmische Energie des Universums eine Entspannung unseres Seelenzustands bewirken.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008577" }

  • Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 6 | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008781" }

  • Polynom bzw. ganzrationale Funktion integrieren; Polynom-Integral bilden | A.14.01

    Wie lässt sich ein Polynom ableiten: Polynome (ganzrationale Funktion oder auch Parabeln höherer Ordnung) integriert man (man sagt auch aufleiten) nach einer einfachen Formel. Die Hochzahl wird um eins erhöht, die neue Hochzahl kommt runter in den Nenner(!) und wird mit den eventuell vorhandenen Vorzahlen verrechnet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008814" }

  • Symmetrie einer Funktion mit Formel berechnen, Beispiel 3 | A.17.03

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008926" }

  • Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 3 | A.18.02

    Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008938" }

Seite:
Zur ersten Seite Eine Seite zurück 10 11 12 13 14 15 16 17 18 19 20 21 Eine Seite vor Zur letzten Seite