Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (15)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 141 bis 150
-
Symmetrie einer Funktion mit Formel berechnen, Beispiel 2 | A.17.03
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008925" }
-
Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 5 | A.13.03
Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit Mal verbunden hinten angehängt werden muss.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008780" }
-
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1c: Hoch-/ Tiefpunkt berechnen
Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008573" }
-
Wendetangente und Wendenormale bestimmen, Beispiel 1 | A.15.03
Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008879" }
-
So leitet man vermischte Funktionen ab, Beispiel 4 | A.13.07
In den bisherigen Kapiteln haben wir hauptsächlich Polynome (normale Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008807" }
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 5 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008940" }
-
Integralfunktion bestimmen | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008983" }
-
Polynom bzw. ganzrationale Funktion ableiten, Beispiel 4 | A.13.01
Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das x, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008765" }
-
Senkrechte Asymptote berechnen, Beispiel 1 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008898" }
-
Polynom bzw. ganzrationale Funktion ableiten, Beispiel 3 | A.13.01
Will man ganzrationale Funktionen ableiten, ist das ganz einfach: Die (alte) Hochzahl kommt mit Mal verbunden vor das x, die neue Hochzahl ist um 1 kleiner als die alte Hochzahl. Polynome ableiten (bzw. Parabeln ableiten bzw. ganzrationale Funktionen ableiten) gehört zu den absoluten Grundlagen des Ableitens, auf dem alles andere aufbaut.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008764" }