Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (14)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 131 bis 140
-
Integralfunktion bestimmen, Beispiel 5 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008988" }
-
Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 6 | A.13.03
Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit Mal verbunden hinten angehängt werden muss.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008781" }
-
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden, Beispiel 1 | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008836" }
-
So leitet man vermischte Funktionen ab, Beispiel 1 | A.13.07
In den bisherigen Kapiteln haben wir hauptsächlich Polynome (normale Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008804" }
-
Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 3 | 14.05
Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt Produktintegration oder auch partielle Integration. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008845" }
-
p-q-Formel, Mitternachtsformel, Beispiel 11 | A.12.05
Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit x², einen mit x und eine Zahl ohne x. Auf einer Seite der Gleichung muss =0 stehen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008718" }
-
Mit der Quotientenregel eine Funktion mit einem Bruch ableiten, Beispiel 6 | A.13.05
Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein x steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*vu*v')/u136
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008795" }
-
p-q-Formel, Mitternachtsformel, Beispiel 10 | A.12.05
Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit x², einen mit x und eine Zahl ohne x. Auf einer Seite der Gleichung muss =0 stehen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008717" }
-
Senkrechte Asymptote berechnen, Beispiel 9 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008906" }
-
Symmetrie einer Funktion mit Formel berechnen, Beispiel 4 | A.17.03
Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so gilt die Formel: f(a-x)+f(a+x)=2b. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so gilt die Formel: f(a-x)=f(a+x).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008927" }