Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (13)
Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)
Es wurden 458 Einträge gefunden
- Treffer:
- 121 bis 130
-
So leitet man vermischte Funktionen ab, Beispiel 9 | A.13.07
In den bisherigen Kapiteln haben wir hauptsächlich Polynome (normale Funktionen) abgeleitet. Meistens müssen Sie jedoch Funktionen ableiten, in denen Sinus, Kosinus, e-Funktionen, Wurzeln, ln, etc.. vermischt werden. Das üben wir an dieser Stelle.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008812" }
-
Mit der Produkt-Integration eine Funktion mit zwei Faktoren integrieren, Beispiel 2 | 14.05
Wenn man die Stammfunktion von einem Produkt braucht, so benötigt man eine spezielle Regel, nämlich die Produktregel für die Aufleitung. Diese heißt Produktintegration oder auch partielle Integration. Diese Produkt-Integration ist eine Umkehrung der Produktregel für die Ableitung.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008844" }
-
Symmetrie von ganzrationalen Funktionen bestimmen | A.17.01
Symmetrie von ganzrationalen Funktionen (Polynomen) erkennt man sehr einfach an den Hochzahlen: Gibt es nur gerade Hochzahlen, so ist die Funktion achsensymmetrisch zur y-Achse. Gibt es nur ungerade Hochzahlen, so ist f(x) punktsymmetrisch zum Ursprung. Gibt es gemischte Hochzahlen, so ist f(x) weder zum Ursprung, noch zur y-Achse symmetrisch.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008915" }
-
Senkrechte Asymptote berechnen, Beispiel 5 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008902" }
-
Integralfunktion bestimmen, Beispiel 4 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008987" }
-
Kubische Funktion, Funktionsanalyse / Kurvendiskussion, Beispiel 1a: wir zeichnen die Funktion
Wir sehen hier ein Beispiel einer Funktionsuntersuchung (=Kurvendiskussion) einer Funktion dritten Grades. Wir berechnen die Nullstellen, Hoch-, Tief- und Wendepunkte, machen eine Skizze der Funktion und freuen uns des Lebens.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008571" }
-
Integralfunktion bestimmen, Beispiel 6 | A.18.10
Eine Integralfunktion ist (blöd gesagt) einfach nur ein Integral, welches als Grenze einen Parameter hat. Es gibt nun zwei wichtige Eigenschaften: 1). Die Ableitung einer Integralfunktion ist die Funktion die im Inneren des Integrals steht. 2). Eine Integralfunktion hat eine Nullstelle immer bei der (bekannten) Integralgrenze.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008989" }
-
Fläche berechnen zwischen Funktion und x-Sachse, Beispiel 4 | A.18.02
Berechnet man den Flächeninhalt zwischen einer Funktion und der x-Achse, integriert man diese Funktion und setzt die Integralgrenzen in die Stammfunktion ein. Die Integralgrenzen sind entweder die Nullstellen oder sie sind in der Aufgabenstellung gegeben.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008939" }
-
Wendetangente und Wendenormale bestimmen, Beispiel 3 | A.15.03
Eine Wendetangente oder eine Wendenormale ist einfach nur die Tangente oder die Normale mit dem Wendepunkt als Berührpunkt. Vorgehensweise: man berechnet den Wendepunkt und stellt dann hier die Tangente (oder die Normale) auf.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008881" }
-
Logarithmus-Funktion integrieren bzw. Stammfunktion bilden | A.14.04
Einen ganz bestimmten Typ von Funktionen, kann man mit den normalen Integrationsregeln nicht bearbeiten. Es um Brüche, die oben nur eine Zahl stehen haben, unten einen Term der Form: m*x+b und KEINE Hochzahl. In diesem Fall ist das wesentliche Element der Stammfunktion der ln (Logarithmus zu Basis e).
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008835" }