Differentialrechnung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (8)

Ergebnis der Suche nach: (Freitext: DIFFERENTIALRECHNUNG)

Es wurden 86 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Amplitude (Mathematik)

    Die Amplitude ist die maximale Auslenkung einer periodisch wellenförmigen Funktion von ihrer Ruhelage aus. Periodisch bedeutet in diesem Falle, dass die Funktion in gleichen Abständen immer wieder dieselben Werte annimmt, bzw. anschaulich gesehen immer wieder dieselbe Form hat.

    Details  
    { "DBS": "DE:DBS:55958" }

  • h-Methode (Mathematik)

    Die h-Methode ist eine andere Interpretation des Differentialquotienten. Anstatt x gegen x_0 laufen zu lassen, lässt man diesmal den Abstand gegen 0 laufen.

    Details  
    { "DBS": "DE:DBS:56036" }

  • Kettenregel (Mathematik)

    Die Kettenregel bildet eine Möglichkeit, die Ableitung der Verkettung zweier differenzierbarer Funktionen u und v auszurechnen.

    Details  
    { "DBS": "DE:DBS:56072" }

  • Ableitung der Umkehrfunktion (Mathematik)

    Die Ableitung einer Umkehrfunktion lässt sich mithilfe einer bestimmten Formel bestimmen.

    Details  
    { "DBS": "DE:DBS:56076" }

  • Regel von L'Hospital (Mathematik)

    Die Regel von L’Hospital ist ein Hilfsmittel zum Berechnen von Grenzwerten bei Brüchen von Funktionen f und g, wenn Zähler und Nenner entweder beide gegen 0 oder beide gegen (+ oder -) unendlich gehen.

    Details  
    { "DBS": "DE:DBS:56018" }

  • Analysis: Videos zu Monotonie und Krümmung

    Dieser Videokurs behandelt einen Kernbereich des Abiturstoffs: die wichtigsten Anwendungen der Ableitung. Dazu gehört, eine Funktion auf Monotonie zu untersuchen und das Krümmungsverhalten sowie die Extrempunkte einer Funktion zu bestimmen.

    Details  
    { "LO": "DE:LO:de.lehrer-online.wm_000006" }

  • Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 4 | A.13.04

    Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit „Mal“ verbunden sind). In beiden Faktoren sollte die Variable („x“) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008786" }

  • Mit der Produktregel (Leibniz-Regel) eine Funktion mit zwei Faktoren ableiten, Beispiel 2 | A.13.04

    Die Produktregel oder auch Leibnizregel wendet man an, will man zwei Faktoren ableiten (die mit „Mal“ verbunden sind). In beiden Faktoren sollte die Variable („x“) auftauchen, anderenfalls muss man die Produktregel nicht zwingend anwenden. Hat die Funktion die Form: f(x)=u*v, so hat die Ableitung die Form: f´(x)=u´*v+u*v´.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008784" }

  • Lernvideo: Die Ableitung der natürlichen Exponentialfunktion

    In diesem Lernvideo von Flip the Classroom wird den Schülerinnen und Schülern zunächst gezeigt, welche Funktionen sie schon ableiten können und welche nicht. Dabei stellt sich heraus, dass Exponentialfunktionen wie z. B. f(x)=2x oder f(x)=4x noch nicht mit den bisherigen Regeln abgeleitet werden können. Dann wird die Eulersche Zahl e eingeführt und Aufgaben zu f(x)=ex ...

    Details  
    { "HE": "DE:HE:2836589" }

  • Tangenten- und Normalengleichungen

    Auf dieser Seite des Landesbildungsservers Baden-Württemberg werden die Tangenten- und Normalengleichungen für beide Typen (Typ 1 mit bekanntem Tangentenberührpunkt und Typ 2 mit unbekannten Tangentenberührpunkten) anhand vieler Beispiele und Lernvideos bestimmt.

    Details  
    { "HE": "DE:HE:2837574" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite