Bedingung - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)

Ergebnis der Suche nach: (Freitext: BEDINGUNG)

Es wurden 87 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite

Treffer:
21 bis 30
  • Bayes-Theorem / Satz von Bayes; Beispiel 3 | Wahrscheinlichkeitsrechnung Formeln W.15.05

    Der Satz von Bayes (auch „Bayes-Theorem“) ist eigentlich fast das gleiche, wie die bedingte Wahrscheinlichkeit. Die Formel sieht ein bisschen anders aus, die Rechnung ist aber fast zu 100% identisch. Die Formel: P(A|B)*P(B)=P(B|A)*P(A). Hierbei ist P(A|B) die Wahrscheinlichkeit, dass A eintrifft, unter der Bedingung (Info), dass B eingetroffen ist. Ebenso ist P(B|A) die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010769" }

  • Moivre-Laplace Näherungsformel, Beispiel 2 | W.18.03

    Gelegentlich muss man die Binomialverteilung durch die Gaußverteilung annähern. (Vor allem wenn die Zahlen so groß sind, dass jeder Taschenrechner aussteigt [das geht relativ schnell]). Das ist erlaubt wenn die sogenannte „Laplace Bedingung“ erfüllt ist, also wenn die Standardabweichung größer als 3 ist. Ist das der Fall, kann die Annäherung durchgeführt werden, d.h. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010827" }

  • Gesetz der großen Zahlen

    Mit über 150 Artikeln und über 100 interaktiven Übungen gehört MatheGuru.com zu den umfangreichsten Mathematikseiten im deutschsprachigen Internet. Zahlreiche farbige Abbildungen visualisieren die einzelnen Sachverhalte und helfen beim Verständnis. Hier wird das Gesetz der großen Zahlen erklärt und an einem Beispiel gezeigt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00004565" }

  • Planet Schule: Was sind Algorithmen

    In dem Video wird am Beispiel eines Kuchenrezepts sehr anschaulich der Begriff des Algorithmus erklärt und welche Anforderungen an einen Algorithmus zu stellen sind. Flussdiagramm und Backschritte werden nebeneinander visualisiert. Daneben geht der Film auch auf die Kontrollstrukturen Bedingung und Wiederholung ein.

    Details  
    { "HE": [] }

  • Der junge Adolf Hitler

    Als Jugendlicher war Hitler ein Träumer und kein besonders guter Schüler. 1933 übernahm er als unumstrittener Führer seiner Partei die Macht in Deutschland. Wie konnte das passieren?  Dauer: ca. 1 min Nutzungsbedingungen CC BY 4.0Mit der Lizenz „CC BY 4.0“ dürfen alle so gekennzeichneten-Clips bzw. Fotos verwendet, geändert und verbreitet werden.  Bedingung ist ...

    Details  
    { "HE": [] }

  • Binomialverteilung LaPlace Bedingung | W.16.04

    Die Binomialverteilung berechnet man mit einem GTR oder einem CAS mit einem einfachen Befehl: „binompdf(n,p,k)“. Hierbei ist „n“ die Gesamtanzahl aller Züge, k ist die Anzahl der gewünschten Treffer, p ist die W.S. eines einzelnen Treffers. Will man die Summe aller Treffer von „0“ bis „k“ haben, kann man den Befehl „binomcdf(n,p,k)“ verwendet.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010798" }

  • Dichtefunktion: was ist die Dichtefunktion? Wie berechnet man sie? Beispiel 1 | W.11.07

    Wenn man Wahrscheinlichkeiten (=W.S.) als Funktion angibt, ist das eine Wahrscheinlichkeitsfunktion oder auch Dichtefunktion. Bedingung: natürlich darf die Funktion keine negativen y-Werte haben (es gibt ja keine negativen W.S.) und die GESAMTE W.S. von minus Unendlich bis plus Unendlich muss genau 1 sein. (Das Integral der Funktion von minus Unendlich bis plus Unendlich muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010700" }

  • Bedingte Wahrscheinlichkeit

    Die (bedingte) Wahrscheinlichkeit von A unter der Bedingung B gibt an, wie wahrscheinlich A ist, falls sicher ist, dass B schon eingetreten ist.

    Details  
    { "DBS": "DE:DBS:56160" }

  • Interferenz von Schallwellen

    Destruktive Interferenz Joachim Herz Stiftung Abb. 2 Bedingung für destruktive Interferenz: Ein Berg von Welle 1 trifft auf ein Tal von Welle 2 oder ein Tal von Welle 1 trifft auf einen Berg

    Details  
    { "LEIFI": "DE:LEIFI:7527" }

  • Dichtefunktion: was ist die Dichtefunktion? Wie berechnet man sie? | W.11.07

    Wenn man Wahrscheinlichkeiten (=W.S.) als Funktion angibt, ist das eine Wahrscheinlichkeitsfunktion oder auch Dichtefunktion. Bedingung: natürlich darf die Funktion keine negativen y-Werte haben (es gibt ja keine negativen W.S.) und die GESAMTE W.S. von minus Unendlich bis plus Unendlich muss genau 1 sein. (Das Integral der Funktion von minus Unendlich bis plus Unendlich muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010699" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 Eine Seite vor Zur letzten Seite