Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (10)

Ergebnis der Suche nach: (Freitext: ASYMPTOTE)

Es wurden 119 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Wertebereich einer Funktion bestimmen, Beispiel 3 | A.11.06

    Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008647" }

  • Wertebereich einer Funktion bestimmen, Beispiel 2 | A.11.06

    Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008646" }

  • Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.44.08

    Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für „x“ den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009573" }

  • Schaubild einer Exponentialfunktion erstellen, Beispiel 2 | A.41.09

    Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009441" }

  • Was bedeuten eigentlich die Funktionen in der Analysis? | A.11

    In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man „x“ einsetzt erhält man verschiedene anschauliche Bedeutungen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008622" }

  • Schaubild einer Logarithmusfunktion erstellen, Beispiel 4 | A.44.07

    ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009570" }

  • Wertebereich einer Funktion bestimmen, Beispiel 4 | A.11.06

    Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008648" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 6 | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008602" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 1 | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008597" }

  • Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 5 | A.06.03

    Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte „x“ in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008601" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite