Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (10)
Ergebnis der Suche nach: (Freitext: ASYMPTOTE)
Es wurden 119 Einträge gefunden
- Treffer:
- 91 bis 100
-
Wertebereich einer Funktion bestimmen, Beispiel 3 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008647" }
-
Wertebereich einer Funktion bestimmen, Beispiel 2 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008646" }
-
Aus dem Schaubild einer Logarithmusfunktion die Funktionsgleichung erstellen, Beispiel 1 | A.44.08
Im Normalfall muss man nur Funktionen der Form f(x)=a·ln(bx+c) zeichnen. Das Argument setzt man Null, wobei man für x den Wert der Definitionslücke einsetzt. Nun nimmt man ein paar Punkte, setzt sie in die Funktion ein und bestimmt die Parameter a, b und c.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009573" }
-
Schaubild einer Exponentialfunktion erstellen, Beispiel 2 | A.41.09
Um das Schaubild einer Exponential-Funktion zu skizzieren oder zu zeichnen, kann man entweder eine ausführliche Wertetabelle machen oder man bestimmt die Asymptoten, eventuell noch Nullstellen, vielleicht berechnet man auch noch zu verschiedenen x-Werten die zugehörigen y-Werte. Das müsste ausreichen, um einen ordentlichen Graphen zu erstellen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009441" }
-
Was bedeuten eigentlich die Funktionen in der Analysis? | A.11
In der Analysis haben die verschiedenen Funktionen verschiedene Bedeutungen. Je nachdem wo man x einsetzt erhält man verschiedene anschauliche Bedeutungen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008622" }
-
Schaubild einer Logarithmusfunktion erstellen, Beispiel 4 | A.44.07
ln-Funktionen zeichnet man über das asymptotische Verhalten an den Grenzen des Definitionsbereichs. Falls man Nullstellen oder Hoch-, Tief- oder Wendepunkte kennt, zeichnet man diese ebenfalls ein und sollte nun die Funktion zeichnen können. Falls notwendig, kann man noch eine Wertetabelle machen, also noch ein paar Punkte einzeichnen.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009570" }
-
Wertebereich einer Funktion bestimmen, Beispiel 4 | A.11.06
Der Wertebereich oder die Wertemenge ist die Menge aller möglichen y-Werte, die eine Funktion annehmen kann. Man kann die Wertemenge bestimmen, wenn man das Schaubild der Funktion hat. Asymptoten, Hoch- und Tiefpunkte geben nun meistens an, welches die höchsten und tiefsten Punkte der Funktion sind.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008648" }
-
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 6 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008602" }
-
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 1 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008597" }
-
Exponentialfunktion: was ist das? Wie rechnet man mit Exponentialfunktionen? Beispiel 5 | A.06.03
Eine Exponentialfunktion ist eine Funktion, in welcher die Unbekannte x in der Hochzahl steht. Die einfachen Exponentialfunktionen (2^x, 3^x, ) sehen alle so aus, dass die sich links der x-Achse nähern und rechts hoch ins Unendliche laufen. (Die x-Achse ist also eine Asymptote). Durch Verschieben, Strecken und Spiegeln der Funktionen ändert sich natürlich deren ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008601" }