Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (4)

Ergebnis der Suche nach: (Freitext: ASYMPTOTE)

Es wurden 119 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
31 bis 40
  • Senkrechte Asymptote berechnen, Beispiel 3 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008900" }

  • Senkrechte Asymptote berechnen, Beispiel 4 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008901" }

  • Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen, Beispiel 1

    Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009522" }

  • Senkrechte Asymptote berechnen, Beispiel 8 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008905" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 6 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009434" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009430" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 5 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009433" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009429" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 4 | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009432" }

  • Exponentialfunktion: Asymptote und Grenzwert berechnen | A.41.07

    Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009428" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite