Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (4)
Ergebnis der Suche nach: (Freitext: ASYMPTOTE)
Es wurden 119 Einträge gefunden
- Treffer:
- 31 bis 40
-
Senkrechte Asymptote berechnen, Beispiel 3 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008900" }
-
Senkrechte Asymptote berechnen, Beispiel 2 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008899" }
-
Senkrechte Asymptote berechnen, Beispiel 6 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008903" }
-
Senkrechte Asymptote berechnen, Beispiel 8 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008905" }
-
Exponentialfunktion: Asymptote und Grenzwert berechnen | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009428" }
-
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 5 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009433" }
-
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 2 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009430" }
-
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 1 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009429" }
-
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 6 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009434" }
-
Exponentialfunktion: Asymptote und Grenzwert berechnen, Beispiel 3 | A.41.07
Um einen Grenzwert zu berechnen, lässt man in der Funktion x einmal gegen plus Unendlich und einmal gegen minus Unendlich laufen. e hoch unendlich geht gegen unendlich, e hoch minus unendlich geht gegen Null. Ist das Ergebnis eine Zahl, so ist dieses die waagerechte Asymptote.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009431" }