Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (3)
Ergebnis der Suche nach: (Freitext: ASYMPTOTE)
Es wurden 119 Einträge gefunden
- Treffer:
- 21 bis 30
-
Senkrechte Asymptote berechnen, Beispiel 1 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008898" }
-
Senkrechte Asymptote berechnen, Beispiel 4 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008901" }
-
Senkrechte Asymptote berechnen, Beispiel 7 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008904" }
-
Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen | A.43.07
Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009521" }
-
Senkrechte Asymptote berechnen | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008897" }
-
Asymptote (Mathematik)
Die Asymptote ist eine Gerade (manchmal auf eine Kurve), an die sich der Graph einer Funktion immer mehr annähert. Annähern beudeutet, dass der Abstand zwischen Asymptote und Funktionsgraph immer kleiner wird, je weiter im Unendlichen man nachsieht.
Details { "DBS": "DE:DBS:56090" }
-
Senkrechte Asymptote berechnen, Beispiel 5 | A.16.01
Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008902" }
-
Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen, Beispiel 1
Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009522" }
-
Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen, Beispiel 2
Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009523" }
-
Schiefe Asymptote von gebrochen-rationalen Funktionen mit Polynomdivision bestimmen, Beispiel 3
Ist die größte Potenz oben genau eins größer als die größte Potenz unten, hat die Funktion eine schiefe Asymptote, also eine Näherungsgerade. Man erhält diese Gerade nur durch eine Polynomdivision.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009524" }