Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (12)

Ergebnis der Suche nach: (Freitext: ASYMPTOTE)

Es wurden 119 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 119
  • Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008592" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 2 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008591" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 4 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008593" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 1 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008590" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 2

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009531" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 5 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008594" }

  • Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 3

    Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009532" }

  • Hyperbel / Hyperbeln berechnen | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008589" }

  • Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 2 | A.27.04

    Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009224" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite