Asymptote - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (12)
Ergebnis der Suche nach: (Freitext: ASYMPTOTE)
Es wurden 119 Einträge gefunden
- Treffer:
- 111 bis 119
-
Hyperbel / Hyperbeln berechnen, Beispiel 6 A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008595" }
-
Hyperbel / Hyperbeln berechnen, Beispiel 5 | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008594" }
-
Analysis 2 | Grundlagen der Funktionsanalyse / Kurvendiskussion
Die Analysis beschäftigt sich mit Funktionen. Die aus mathematischer Sicht interessantesten Punkte sind unter dem Oberbegriff Funktionsanalyse bzw. Kurvendiskussion zusammengefasst. Darin enthalten sind Schnittpunkte mit den Achsen, Hoch-, Tief- und Wendepunkte, evtl. noch Asymptoten. Als sehr wichtiges Hilfsmittel benötigt man die Ableitungen (=Differenzial) und das ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008621" }
-
Hyperbel / Hyperbeln berechnen | A.06.02
Eine Funktion, die im Nenner (unten) eines Bruchs ein x stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind 1/x, 1/x²,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00008589" }
-
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 3
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009532" }
-
Aussagen zur Stammfunktion treffen anhand des Schaubildes der Ableitung, Beispiel 2 | A.27.04
Gegeben ist das Schaubild einer Ableitungsfunktion. Man muss nun bestimmte Aussagen über die Stammfunktion treffen. Manchmal sind auch ein paar Aussagen gegeben und man muss entscheiden, ob die wahr, falsch oder unentscheidbar sind. Man kann die Stammfunktion SKIZZIEREN (also die Ableitung grafisch aufleiten) oder man denkt ein bisschen um die Ecke.
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009224" }
-
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 2
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009531" }
-
Aus dem Schaubild einer gebrochen-rationalen Funktion die Funktionsgleichung erstellen, Beispiel 1
Man erkennt daran, dass eine Zeichnung zu einer gebrochen-rationalen Funktion gehört, dass die Zeichnung durch senkrechte Asymptoten geteilt ist. Am geschicktesten beginnt man mit den senkrechten Asymptoten (=Polstelle), welche den Nenner der Funktion festlegt. Oben, im Zähler, schreibt man einen Parameter. Hinter den Bruch schreibt man die schiefe oder waagerechte ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009530" }
-
Wissenswertes zu Funktionen | A.52
Diverses ist Sammelsurium von verschiedenen Themen. Allerdings mit Themen die etwas schwieriger sind und eher in den oberen Bereich der Oberstufe oder unteren Bereich der Hochschule gehören. Im ersten Unterkapitel vertiefen wir das Thema der senkrechten Asymptoten (Weiterführung von Kap. A.43.06), das zweite Unterkapitel beinhaltet eine leichte Regel für schwere ...
Details { "LEARNLINE": "DE:SODIS:LEARNLINE-00009670" }