Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: GEOMETRIE) ) und (Lernressourcentyp: FILM)

Es wurden 260 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Mathe-Seite: [5] Vektorgeometrie

    ...

    Details  

  • [5.1.7] Ebenen umformen (Koordinatenform in Parameterform)

    Will man eine Koordinatenform in Parameterform umwandeln, sucht man sich drei Punkte der Ebene (z.B. die Spurpunkte) und stellt aus diesen drei Punkten die Parameterform auf. (wie in Kap.5.1.5)

    Details  

  • [5.1.8] Ebenen zurückwandeln

    Eine Normalenform in eine Koordinatenform umzuwandeln und umgekehrt ist recht einfach, da in beiden Ebenenformen der Normalenvektor als Hauptelement auftaucht. Man sollte nur wissen, wie einen Koordinaten- bzw. eine Normalengleichung aussieht.

    Details  

  • [5.1.9] Kreuzprodukt

    Mit dem Kreuzprodukt (bzw. Vektorprodukt) kann man einige Rechnungen erheblich vereinfachen. Die Hauptanwendung ist wohl die, um eine Parameterform in eine Koordinatenform umzuwandeln (siehe 5.1.6, Bsp1-Bsp3). Desweiteren verwendet man das Kreuzprodukt um Flächen von Dreiecken und Parallelogrammen leicht zu berechnen (unter Parallelogramm fällt auch: Rechteck, ...

    Details  

  • [5.1.10] Spurpunkte von g einzeichnen => besondere Lage

    Spurpunkte von Geraden sind Schnittpunkte von Geraden mit Koordinatenebenen. Die x1-x2-Ebene hat die Gleichung x3=0, da setzt man die x3-Koordinate der Geraden Null und kriegt so den ersten Spurpunkt. Ebenso verfährt man mit der x1-x3-Ebene und der x2-x3-Ebene.

    Details  

  • [5.1.11] Spurpunkte von E einzeichnen => besondere Lage

    Spurpunkte von Ebenen sind Schnittpunkte mit den Koordinatenachsen. Den Schnittpunkt mit der x1-Achse berechnet man, indem man in die Koordinatengleichung der Ebene x2=0 und x3=0 einsetzt und nach x1 auflöst. Ebenso berechnet man die Achsenschnittpunkte mit der x2- und der x3-Achse.

    Details  

  • [5.1.12] Ebenen einzeichnen

    ...

    Details  

  • [5.2.1] Gerade-Gerade (vier mögliche Lagen)

    Zwei Geraden können auf vier Lagen zu einander liegen: wenn die Richtungsvektoren beider Geraden Vielfache voneinander sind, sind die Geraden parallel oder identisch. Sind die Richtungsvektoren keine Vielfache voneinander, so liegen die Geraden windschief oder sie haben einen Schnittpunkt. Vorgehensweise: Man betrachtet die Richtungsvektoren beider Geraden und ...

    Details  

  • [5.2.2] Gerade-Ebene (drei mögliche Lagen)

    Es gibt drei Lagen, die eine Gerade und eine Ebene annehmen können. Man unterscheidet diese drei Fälle einfach in dem man die Schnittpunkte von Gerade und Ebene ausrechnet. 1.Fall: Gerade und Ebene sind parallel, in dem Fall gibt es keine Schnittpunkte. 2.Fall: Die Gerade liegt in der Ebene, in dem Fall gibt’s unendlich viele Schnittpunkte. 3.Fall: Es gibt einen ...

    Details  

  • [5.2.3] Ebene-Ebene (drei mögliche Lagen)

    Zwei Ebenen können auf drei Arten zueinander liegen: Sie können parallel sein, identisch sein oder sie haben eine Schnittgerade. Wenn die Ebenen in Koordinatenform gegeben sind, erkennt man die drei Lagen sehr schnell. Wenn die linken Seiten der Koordinatengleichungen Vielfache voneinander sind, sind die Ebenen parallel oder identisch. Falls nicht, haben sie ...

    Details  

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 4 5 6 7 8 9 10 11 12 Eine Seite vor Zur letzten Seite