Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: MATHEMATIK) und (Systematikpfad: "ZUORDNUNGEN, FUNKTIONEN") ) und (Systematikpfad: INTEGRALRECHNUNG)

Es wurden 27 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite

Treffer:
1 bis 10
  • Klapptest: lineare Substitution

    Dieses pdf-Dokument vom Landesbildungsserver Baden-Württemberg ist ein Klapptest zum intensiven Üben der Integrationsregel ”Lineare Substitution”.

    Details  
    { "HE": "DE:HE:2837734" }

  • Bestimmtes Integral berechnen

    Den Wert eines bestimmten Integrals über eine Funktion f berechnet man, indem man ihre Stammfunktion an den beiden Integrationsgrenzen auswertet und die Differenz der der beiden bildet ("obere Grenze minus untere Grenze").

    Details  
    { "Serlo": "DE:DBS:56115" }

  • Integral (Mathematik)

    Das Integral ist ein Oberbegriff für das bestimmte und unbestimmte Integral. Ein bestimmtes Integral liefert einen Zahlenwert, während ein unbestimmtes Integral eine Funktion liefert.

    Details  
    { "Serlo": "DE:DBS:55971" }

  • Bestimmtes und unbestimmtes Integral

    Der Hauptunterschied zwischen einem bestimmten und einem unbestimmen Integral ist das Vorhandensein (bestimmtes Integral) bzw. Fehlen (unbestimmtes Integral) der Integrationsgrenzen.

    Details  
    { "Serlo": "DE:DBS:56088" }

  • Flächenberechnung mit Integralen

    Das Integral stellt einen orientierten Flächeninhalt dar, doch man kann damit auch Flächeninhalte allgemeinerer Flächen, die durch Einschluss verschiedener Funktionsgraphen gegeben sind, berechnen.

    Details  
    { "Serlo": "DE:DBS:56087" }

  • Mathematik-digital/Integralrechnung

    Im Lernpfad soll eine Einführung in die Integralrechnung mit den wichtigsten Grundlagen sowohl für Grund- als auch Leistungskurse in Mathematik der Jahrgangsstufe 12 gegeben werden.

    Details  
    { "ZUM": "DE:DBS:54983" }

  • Stammfunktion finden (Mathematik)

    Eine Stammfunktion F einer ursprünglichen, stetigen Funktion f ist eine differenzierbare Funktion, deren Ableitung wieder die ursprüngliche Funktion f ist. Umgekehrt ergibt das unbestimmte Integral über eine Funktion f alle Stammfunktionen F.

    Details  
    { "Serlo": "DE:DBS:55959" }

  • Integration durch Substitution

    Steht in einem Integral die Verknüpfung von zwei Funktionen (evtl. sogar multipliziert mit der Ableitung der inneren Funktion), kann Substitution zur Vereinfachung beitragen.

    Details  
    { "Serlo": "DE:DBS:56080" }

  • Partielle Integration (Mathematik)

    Die partielle Integration ist eine Methode zur Integration bestimmter Produkte zweier Funktionen. Man wendet sie oft an, wenn in einem Integral das Produkt zweier Funktionen steht, von denen die eine einfach zu integrieren und die andere leicht abzuleiten ist.

    Details  
    { "Serlo": "DE:DBS:56086" }

  • Uneigentliches Integral (Mathematik)

    Es kann vorkommen, dass eine Fläche unter einem Funktionsgraphen betrachtet wird, die in einer Richtung unbeschränkt ist. Dies ist dann der Fall, wenn die Funktion an mindestens einer Integralgrenze nicht definiert ist.

    Details  
    { "Serlo": "DE:DBS:56204" }

Seite:
Zur ersten Seite Eine Seite zurück 1 2 3 Eine Seite vor Zur letzten Seite