Ergebnis der Suche (14)

Ergebnis der Suche nach: ( ( (Freitext: FLASH-VIDEO) und (Schlagwörter: ANALYSIS) ) und (Schlagwörter: "FUNKTION (MATHEMATIK)") ) und (Schlagwörter: "GLEICHUNG (MATHEMATIK)")

Es wurden 352 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite

Treffer:
131 bis 140
  • So löst man eine Differentialgleichung DGL, Beispiel 1 | A.53.01

    Eine relativ einfache Möglichkeit, eine DGL zu lösen, ist folgende: Die DGL ist gegeben, sowie die Funktion (quasi die Lösung). Die Funktion ist jedoch in Abhängigkeit von Parametern gegeben. Das Ziel ist nun, die Parameter zu bestimmen, um die Funktion vollständig zu kennen. Man erreicht das, indem man die gegebene Funktion (mitsamt Parametern) ableitet und dann sowohl ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009699" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 5 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009461" }

  • Tangente außerhalb, Beispiel 3 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008888" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 1 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009457" }

  • Tangente außerhalb, Beispiel 6 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008891" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 3 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009459" }

  • Normale außerhalb | A.15.05

    Eine „Normale von außen“ oder „Normale von außerhalb“ liegt vor, wenn der Punkt in welchem die (orthogonale) Normale auf der Funktion steht NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Normale liegt. Vorgehensweise: man verwendet die Normalenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008892" }

  • Lineare, inhomogene Differentialgleichung DGL lösen | A.53.03

    Eine lineare inhomogene DGL hat die Form a·y'+b·y=c (a, b, c sind nicht zwingend Zahlen, sondern hängen von „x“ ab). Im ersten Schritt bestimmt man die Lösung der zugehörigen homogenen DGL (man setzt also c=0) (?Kap.4.3.2). Im zweiten Schritt ersetzt man die Integrationskonstante „c“ durch eine Funktion „c(x)“. Nun setzt man die gesamte Lösung (mitsamt c(x)) ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009707" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008627" }

  • Einfache trigonometrische Gleichungen lösen, Beispiel 2 | A.42.02

    Trigonometrische Gleichungen können leider beliebig komplex sein. Die einfachen Gleichungen kann man auf die Form: sin(Ding)=Zahl bzw. cos(Ding)=Zahl (ebenso mit tan) zurückführen (in „Ding“ sollte ein „x“ drinstecken). Mit einer Wertetabelle oder mit einem Taschenrechner kann man nun zuerst nach „Ding“ auflösen, man erhält: Ding=arcsin(Zahl) bzw. Ding=arccos(Zahl), ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009458" }

Seite:
Zur ersten Seite Eine Seite zurück 8 9 10 11 12 13 14 15 16 17 18 19 Eine Seite vor Zur letzten Seite