Ergebnis der Suche (20)

Ergebnis der Suche nach: (Freitext: DREIECK)

Es wurden 252 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite

Treffer:
191 bis 200
  • Punkt im Inneren eines Dreiecks oder Parallelogramms berechnen, Beispiel 2 | V.05.05

    Liegt ein Punkt im Inneren eines Parallelogramms, stellt man vom Parallelogramm eine Ebenengleichung in Parameterform auf. Nun macht man eine Punktprobe. Beide Parameter müssen zwischen 0 und 1 liegen. Soll der Punkt innen im Dreiecks liegen, stellt man ebenfalls eine Ebene auf und macht die Punktprobe. Diesmal muss die SUMME der Parameter zwischen 0 und 1 liegen. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010511" }

  • Cosinus und arccos und wie man richtig damit rechnet, Beispiel 3 | T.01.05

    Der Kosinus ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Ankathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Ankathete (A) und Hypotenuse (H) nennt man Arkuscosinus (im Taschenrechner ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010297" }

  • Sinus und arcsin und wie man richtig damit rechnet, Beispiel 3 | T.01.04

    Der Sinus ist eine sogenannte Winkelfunktion. Der Sinus ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Hypotenuse (H) nennt man Arkussinus (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010292" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010319" }

  • Sinus und arcsin und wie man richtig damit rechnet, Beispiel 4 | T.01.04

    Der Sinus ist eine sogenannte Winkelfunktion. Der Sinus ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Gegenkathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Gegenkathete (G) und Hypotenuse (H) nennt man Arkussinus (im ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010293" }

  • Prisma berechnen: Prisma-Volumen, Höhe, Deckfläche, schiefes Prisma; Beispiel 1 | T.06.03

    Ein Prisma ist ein Körper, der unten und oben zwei parallele Flächen hat. Die Flächen müssen allerdings komplett gleich sein. So gesehen sind recht viele Körper Prismen (z.B. Zylinder, Würfel, Quader). Das Praktische an einem Prisma ist die Berechnung des Volumens. Das Volumen jedes Prismas berechnet man über „Grundfläche mal Höhe“. (Wie man die Grundfläche ist ein ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010320" }

  • Cosinus und arccos und wie man richtig damit rechnet | T.01.05

    Der Kosinus ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Ankathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Ankathete (A) und Hypotenuse (H) nennt man Arkuscosinus (im Taschenrechner ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010294" }

  • Cosinus und arccos und wie man richtig damit rechnet, Beispiel 4 | T.01.05

    Der Kosinus ist eine sogenannte Winkelfunktion und ist an und für sich unanschaulich. Er drückt aber im rechtwinkligen Dreieck das Verhältnis zwischen Ankathete und Hypotenuse aus, so dass man damit eine Beziehung zwischen Winkeln und den Seitenlängen des Dreiecks erhält. Das Verhältnis zwischen Ankathete (A) und Hypotenuse (H) nennt man Arkuscosinus (im Taschenrechner ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010298" }

  • Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 6 | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008421" }

  • Punkt im Inneren eines Dreiecks oder Parallelogramms berechnen, Beispiel 1 | V.05.05

    Liegt ein Punkt im Inneren eines Parallelogramms, stellt man vom Parallelogramm eine Ebenengleichung in Parameterform auf. Nun macht man eine Punktprobe. Beide Parameter müssen zwischen 0 und 1 liegen. Soll der Punkt innen im Dreiecks liegen, stellt man ebenfalls eine Ebene auf und macht die Punktprobe. Diesmal muss die SUMME der Parameter zwischen 0 und 1 liegen. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00010510" }

Seite:
Zur ersten Seite Eine Seite zurück 14 15 16 17 18 19 20 21 22 23 24 25 Eine Seite vor Zur letzten Seite