Koordinatensystem - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (18)

Ergebnis der Suche nach: (Freitext: KOORDINATENSYSTEM)

Es wurden 180 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite

Treffer:
171 bis 180
  • Komplexe Zahlen; Kartesische Koordinaten; Polarform; Exponentialdarstellung, Beispiel 2 | A.54.01

    Das „Konjugierte“ eine komplexen Zahl erhält man, wenn man das Vorzeichen vom Imaginärteil ändert. Zeichnerisch erhält man die konjugierte Zahl, indem man die Ausgangszahl in die komplexe Zahlenebene einzeichnet und dann an der waagerechten Achse spiegelt. Es gibt drei wichtige Formen, in welcher man eine komplexe Zahl darstellen kann. 1) z=a+bi ist die „Normalform“, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009725" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009735" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 2 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009737" }

  • Komplexe Zahlen umrechnen von einer Form in eine andere Form, Beispiel 3 | A.54.03

    Eines der wichtigsten Themen bei komplexen Zahlen ist zu wissen, wie man Zahlen von der einen in die andere Form umwandelt. Die Polarform (oder Exponentialdarstellung) sieht so aus: z=r*e^(phi*i). Die trigonometrische Form: z=r*(cos(phi)+i*sin(phi)). Die kartesische Form lautet: z=a+bi. Man muss also wissen, wie man auf r und phi kommt, wenn a und b gegeben ist und umgekehrt. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009738" }

  • Fläche zwischen zwei Funktionen berechnen; eingeschlossene Fläche, Beispiel 2 | A.18.03

    Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die „Aufleitung“ ein und zieht die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008944" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 3 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008335" }

  • Fläche zwischen zwei Funktionen berechnen; eingeschlossene Fläche, Beispiel 5 | A.18.03

    Braucht man die Fläche zwischen zwei Funktionen, berechnet man das Integral von der Differenz beider Funktionen. (Man zieht die Funktionen also voneinander ab und leitet das Ergebnis auf). Die Integralgrenzen sind entweder die Schnittpunkte der Funktionen oder sie sind in der Aufgabenstellung gegeben. Zum Schluss setzt man beide Grenzen in die „Aufleitung“ ein und zieht die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008947" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 4 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008336" }

  • Rationale Zahlen per Wochenplan vermitteln

    In dieser Unterrichtseinheit lernen die Schülerinnen und Schüler die Begriffe und die Eigenschaften der Menge der Rationalen Zahlen (Q) kennen. Sie berechnen die rationalen Zahlen nach den Grundrechenarten. Sie lernen diese als eine Menge von Zahlen kennen, die am Zahlenstrahl und am Koordinatensystem abgelesen und abgetragen werden können. Ziel ist die Umsetzung durch ...

    Details  
    { "LO": "DE:LO:de.lehrer-online.un_1007968" }

  • Bestimmte Integrale beGREIFEN

    In diesem Fachartikel zum Thema "Bestimmte Integrale beGREIFEN" wird eine Möglichkeit zur enaktiven Veranschaulichung des bestimmten Integrals im Sinne der Montessori-Pädagogik vorgestellt, die auf den Regelschulunterricht übertragen werden kann.

    Details  
    { "LO": "DE:LO:de.lehrer-online.ar_1001581" }

Seite:
Zur ersten Seite Eine Seite zurück 7 8 9 10 11 12 13 14 15 16 17 18 Eine Seite vor Zur letzten Seite