Funktionsanalyse - kostenloses Unterrichtsmaterial, Arbeitsblätter und Übungen (39)

Ergebnis der Suche nach: (Freitext: FUNKTIONSANALYSE)

Es wurden 460 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite

Treffer:
381 bis 390
  • Mit der Funktionsgleichung f(x) den y-Wert berechnen, Beispiel 1 | A.11.01

    Setzt man einen x-Wert in die Funktionsgleichung f(x) ein, erhält man den y-Wert der Funktion in diesem Punkt. So kann man alle y-Werte berechnen. Der y-Wert heißt auch einfach nur „Wert der Funktion“ in dem Punkt. Bei anwendungsorientierten Funktion sind die y-Werte meist der vorhandene Bestand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008624" }

  • Steigung berechnen mit der 1. Ableitung der Funktionsgleichung f'(x)=m , Beispiel 4 | A.11.02

    Setzt man einen x-Wert in die erste Ableitung f'(x) ein, kann man die Steigung der Funktion berechnen in diesem Punkt. Diese Steigung ist auch die Tangentensteigung bzw. momentane Änderungsrate f'(x)=m. Bei anwendungsorientierten Funktion ist die Steigung oft die Änderung / Zunahme / Abnahme des Bestands.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008631" }

  • Symmetrie einer Funktion über Verschieben beweisen, Beispiel 3 | 17.04

    Ist eine Funktion punktsymmetrisch zu irgendeinem Symmetriepunkt S(a|b), so verschiebt man die Funktion so weit nach links/rechts und oben/unten, bis der Symmetriepunkt im Ursprung liegt. Nun beweist man von der verschobenen Funktion die Symmetrie zum Ursprung. Ist eine Funktion achsensymmetrisch zu irgendeiner senkrechten Symmetrieachse x=a, so verschiebt man die Funktion so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008931" }

  • Fläche zwischen drei Funktionen berechnen / eingeschlossene Fläche, Beispiel 1 | A.18.04

    Wenn man eine Fläche zwischen drei Funktionen berechnen soll, geht das nicht direkt. Man muss die Fläche aufteilen, so dass sich sowohl unterhalb als auch oberhalb der Fläche nur je EINE Funktion befindet. Meist befindet sich zwischen den linker und rechter Grenze der eingeschlossenen Flächen irgendein Schnittpunkt von zwei Funktionen. An diesem Schnittpunkt teilt man die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008950" }

  • Tangente außerhalb, Beispiel 4 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008889" }

  • Wie man mit GTR und CAS rechnet | A.29

    Ein grafischer Taschenrechner (GTR) oder ein Computer Algebra System (CAS) erlaubt natürlich Rechnungen, die von Hand niemals möglich sind (oder zumindest nicht in der kurzen Zeit). Wir machen hier ein paar Beispiele zu solchen Rechnungen. Als Schüler/Student ist es Ihre Aufgabe zu wissen, wie man den GTR/CAS bedient (also: Nullstellen berechnen, Gleichungen lösen, Hoch- ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009269" }

  • Tangente außerhalb, Beispiel 2 | A.15.04

    Tangente von außen oder Tangente von außerhalb liegt vor, wenn der Berührpunkt der Tangente (oder Normale) NICHT gegeben ist. Dafür kennt man einen anderen Punkt, der auf der Tangente liegt. Vorgehensweise: man verwendet die Tangentenformel, setzt die Koordinaten dieses anderen Punktes für x und y ein und erhält nun eine Gleichung mit nur noch einer einzigen Unbekannten ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008887" }

  • Substitution von Termen in Gleichungen, Beispiel 3 | A.12.06

    Substituieren heißt ersetzen. Substitution wendet man an, wenn man zwei Terme sowie eine Zahl hat, wobei die Hochzahl des einen Terms doppelt so hoch wie die Hochzahl des anderen Terms ist. Nun substituiert (ersetzt) man einen Term durch „u“, den anderen durch „u²“ und erhält eine Mitternachtsformel, aus welcher man u1 und u2 berechnet. Danach muss man resubstituieren, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008723" }

  • Ableitung f(x) einer Funktion | A.13

    Die Ableitung einer Funktion f(x) gibt die Steigung bzw. die Tangentensteigung an. Bei anwendungsbezogenen Aufgaben ist die Ableitung die Zunahme bzw. die Abnahme (je nach Vorzeichen). Es gibt drei wichtige Regeln für die Ableitung: Kettenregel, Quotientenregel, Produktregel. Mit allen kann man ableiten. Fast jeder Funktionstyp hat eine andere Ableitungsregel, d.h. man muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008760" }

  • Gleichungen auf Normalform bringen, Beispiel 11 | A.12.01

    Um eines der Lösungsverfahren anwenden zu können (Ausklammern, Mitternachtsformel, Substitition oder Polynomdivision / Horner-Schema) muss man jede Gleichung erst auf Normalform bringen. D.h.: alle Nenner müssen weg (man multipliziert mit diesen), eventuell vorhandene Klammern muss man auflösen, Terme die zusammengefasst werden können muss man zusammenfassen, alles muss ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008672" }

Seite:
Zur ersten Seite Eine Seite zurück 33 34 35 36 37 38 39 40 41 42 43 44 Eine Seite vor Zur letzten Seite