Ergebnis der Suche (11)

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: E-LEARNING)

Es wurden 1598 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite

Treffer:
101 bis 110
  • Linearfaktorzerlegung: so einfach geht's, Beispiel 4 | B.05.01

    Wenn man Glück hat, lässt sich aus der Funktion so viel ausklammern, dass in der Klammer nur Zahlen übrig sind und ein „x“ ohne Hochzahl. In der Klammer steht demnach ein linearer Term. Vielleicht kann man auch eine binomische Formel anwenden. (Ist hilfreich, wenn man sie kann). Schwuppdiwupp ist die Linearfaktorzerlegung fertig.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009883" }

  • Parabelformen: Normalform, Scheitelform, Linearfaktorform LFF | A.04.03

    Parabeln gibt es in drei Formen: 1) die häufigste und wichtigste ist die „allgemeine Form“ oder „Normalform“ y=ax²+bx+c 2) die Scheitelform verwendet man, wenn der Scheitelpunkt gegeben ist oder man den Scheitelpunkt braucht y=a*(x-xs)²+ys [xs und ys sind hierbei die x- und y-Koordinaten des Scheitelpunkts] 3) die Linearfaktorform verwendet man manchmal, wenn es um die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008466" }

  • Logarithmusfunktion: Gleichungen lösen, Beispiel 1 | A.44.05

    Die Gleichung, die einen Logarithmus enthält, löst man, in dem man nach dem Logarithmusterm auflöst. Eventuell muss man vorher noch „x“ oder Ähnliches auflösen. Hat man dem ln(...) aufgelöst, muss man den ln wegkriegen. Dieses erreicht man, in dem man die andere Seite in die Hochzahl der einer Exponentialfunktion setzt. Aus ln(Ding)=Zahl folgt also: Ding=e^Zahl. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009555" }

  • Entfernung berechnen, Beispiel 5 | A.01.04

    Entfernungen von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen. Liegen die beiden Punkte nebeneinander oder übereinander, kann man die Entfernung der beiden Punkte auch auslesen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008324" }

  • Mit Integration durch Substitution eine verkettete Funktion integrieren, Beispiel 1 | A.14.06

    Braucht man die Stammfunktion einer verschachtelten Funktionen und das Innere der Klammer ist nicht linear (also nicht m*x+b), kann man die lineare Substitution nicht mehr anwenden. Man braucht die normale (etwas schwerere) Substitutionsregel. Vorgehensweise: man sucht eine Klammer, die innere Ableitung (oder Vielfache davon) dieser Klammer muss irgendwo in der Funktion ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008850" }

  • Normalparabel zeichnen, Beispiel 1 | A.04.02

    Eine Normalparabel kann man natürlich zeichnen, in dem man eine Wertetabelle erstellt, die Punkte einzeichnet und dann zu einer Parabelform verbindet. (Mit der Methode kann man alle Funktionen und alle Parabeln zeichnen). Geschickter ist es jedoch, den Scheitelpunkt zu berechnen (siehe z.B. Kap.A.04.04) und dann von diesem Scheitelpunkt aus die Normalparabel aus zu zeichnen. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008463" }

  • Mit Keplersche Fassregel Flächeninhalt bestimmen, Beispiel 2 | A.32.04

    Es gibt Verfahren, um Flächeninhalte näherungsweise zu bestimmen. Eines dieser Näherungsverfahren ist die Keplersche Fassregel. Der Vorteil an der Keplerschen Fassregel ist der, dass sie recht einfach ist und recht akzeptable, also recht genaue Ergebnisse liefert. Der große Nachteil ist: man weiß nicht wie genau das erhaltene Ergebnis ist. Man weiß nicht, ob die ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009370" }

  • Geradengleichung über Normalform aus zwei Punkten bestimmen | A.02.11

    Kennt man von einer Geraden zwei Punkte (durch welche die Gerade geht), kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Koordinaten der Punkte für „x“ und „y“ in die Geradengleichung: „y=m*x+b“ ein. Durch das Einsetzen jedes Punktes erhält man je eine Gleichung (also ein Gleichungssystem mit „m“ und „b“ als Unbekannte). ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008398" }

  • Ableitung der Umkehrfunktion, Beispiel 5 | A.28.04

    Die Ableitung der Umkehrfunktion ist der Kehrwert von der Ableitung der normalen Funktion. So weit die Theorie. In der Praxis muss man dann noch aufpassen, dass man bei der Funktion auch tatsächlich die normalen x-Werte nimmt, bei der Umkehrfunktion muss man natürlich die x-Werte der Umkehrfunktion nehmen (also die y-Werte der normalen Funktion), Eigentlich nicht schwer, ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009263" }

  • Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 3 | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008778" }

Seite:
Zur ersten Seite Eine Seite zurück 5 6 7 8 9 10 11 12 13 14 15 16 Eine Seite vor Zur letzten Seite