Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 10235 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite

Treffer:
91 bis 100
  • Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008592" }

  • Beschränktes Wachstum berechnen, Beispiel 4 | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008616" }

  • Übungen mit Excel

    Interaktive Arbeitsmappen zum Bruchrechnen

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00011722", "LBS-BW": "DE:LBS-BW:464a1f66c0af226090f99345dc303b0d" }

  • Schnittpunkte zweier Parabeln berechnen, Beispiel 2 | A.04.12

    Sucht man den Schnittpunkt von zwei Parabeln, muss man beide gleichsetzen. Fällt „x²“ weg, kann man einfach nach dem verbliebenen „x“ auflösen. Bleibt „x²“ übrig, bringt man alles auf eine Seite und kann mit der Mitternachtsformel (p-q-Formel oder a-b-c-Formel) x berechnen. Man erhält keine/eine/zwei Lösungen für x. Setzt man x in eine der Parabeln ein, hat man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008512" }

  • Berechnung Dreieck: Fläche und Flächeninhalt Dreieck berechnen, Beispiel 3 | A.03.02

    Der Lösungsweg, den man am häufigsten sieht, verwendet die Formel A=½*g*h. Irgendeine der drei Seiten wählt man als Grundlinie. Die Länge der Grundlinie bestimmt man über den Abstand der beiden Endpunkte (Abstand Punkt-Punkt). Um die Höhe zu berechnen, berechnet man erst die Steigung der Grundlinie. Die Steigung der Höhe ist nun der negative Kehrwert der ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008445" }

  • Punkt an Gerade spiegeln; Symmetrieachse, Beispiel 2 | A.01.06

    Wir spiegeln hier nur an senkrechten oder waagerechten Achsen, da Spiegeln an schräg liegenden Geraden wesentlich komplizierter ist. Am einfachsten spiegelt man, indem man alles einzeichnet und sich dann überlegt, wo der gespiegelte Punkt nun „Hin wandert“. Falls Sie Formeln haben wollen: Spiegelt man einen Punkt P(a|b) an einer senkrechten Gerade mit der Gleichung x=u, so ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008334" }

  • Senkrechte Asymptote berechnen, Beispiel 4 | A.16.01

    Man kann senkrechte Asymptoten berechnen, wenn man den Nenner Null setzt (sofern man einen Bruch und damit einen Nenner hat) oder in dem man das Argument (=das Innere der Klammer) von einem Logarithmus (sofern vorhanden) Null setzt.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008901" }

  • Anatomie und Fortbewegung der Zauneidechse

    Unterrichtsentwurf zu die Anatomie und Fortbwegung der Zauneidechse für die 6. Klasse.

    Details  
    { "DBS": "DE:DBS:1232" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u²

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008789" }

  • Salze essen

    Der Bereich Didaktik der Chemie der Universität Bayreuth hält auf seinen Webseite eine Menge an Unterrichtsmaterialien und Versuchsbeschreibungen für viele Themen bereit.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001284" }

Seite:
Zur ersten Seite Eine Seite zurück 4 5 6 7 8 9 10 11 12 13 14 15 Eine Seite vor Zur letzten Seite