Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 10133 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Hyperbel / Hyperbeln berechnen, Beispiel 6 A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008595" }

  • Polynomdivision, Beispiel 5 | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008738" }

  • Polynomdivision | A.12.07

    Polynomdivision (oder Horner-Schema) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil der Polynomdivision ist der, dass man bereits eine Nullstelle braucht - die man eventuell durch Raten erhalten kann.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008733" }

  • Radioaktivität

    Der Bereich Didaktik der Chemie der Universität Bayreuth hält auf seinen Webseiten gesonderte Materialien für den Chemieunterricht an Grund- und Hauptschulen bereit.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001504" }

  • Winkel und Anstiegswinkel von Geraden berechnen, Beispiel 5 | A.02.15

    Es gibt nur zwei Formeln, um Winkel zu berechnen. Die etwas hässlichere Formel finden Sie im nächsten Kapitel. Die einfachere Formel lautet „m=tan(alpha)“. Hierbei ist „m“ die Steigung der Geraden und alpha immer der Winkel zwischen dieser Geraden und der x-Achse (oder einer anderen waagerechten Gerade). Diesen Winkel nennt man auch Anstiegswinkel. Will man den ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008420" }

  • Geradengleichung bestimmen über Punktsteigungsform PSF, Beispiel 1 | A.02.09

    Hat man von einer Geraden einen Punkt und die Steigung gegeben, kann man die Geradengleichung recht einfach bestimmen. Eine der Möglichkeiten wäre die Steigung und die Koordinaten des Punktes für „m“, „x0“ und „y0“ in die Punkt-Steigungs-Form (PSF) ein und löst nach „y“ auf. Wie lautet die Gleichung der PSF überhaupt? Es gibt mehrere Möglichkeiten für die PSF. ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008386" }

  • Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss

    Die Bildungsstandards im Fach Mathematik für den Mittleren Schulabschluss zum Stand vom 04.12.2003.

    Details  
    { "DBS": "DE:DBS:48887" }

  • Hyperbel / Hyperbeln berechnen, Beispiel 3 | A.06.02

    Eine Funktion, die im Nenner (unten) eines Bruchs ein „x“ stehen hat, ist eine Hyperbel. Die einfachsten Hyperbeln sind „1/x“, „1/x²“,... Da man solche Brüche mithilfe der Potenzregeln auch umschreiben kann, kann man auch sagen, dass Hyperbeln Funktionen sind, bei denen negative Hochzahlen auftauchen. Normalerweise nähern sich Hyperbeln einer waagerechten und einer ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008592" }

  • Beschränktes Wachstum berechnen, Beispiel 4 | A.07.03

    Begrenztes Wachstum (=beschränktes Wachstum) wächst am Anfang relativ schnell und nähert sich allmählich und immer langsamer einer Grenze (=Schranke), welche mit G oder S bezeichnet wird. Typische Beispiele für begrenztes Wachstum sind Erwärmungs- oder Abkühlungsvorgänge, Mischungsverhältnisse (z.B. irgendein Zeug löst sich in Wasser etc.. auf). Allgemein gilt für ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008616" }

  • Übungen mit Excel

    Interaktive Arbeitsmappen zum Bruchrechnen

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00011722", "LBS-BW": "DE:LBS-BW:464a1f66c0af226090f99345dc303b0d" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite