Ergebnis der Suche

Ergebnis der Suche nach: ( (Systematikpfad: SCHULE) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 10278 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite

Treffer:
71 bis 80
  • Kohlenstoffdioxid und Wasser

    Der Bereich "Didaktik der Chemie" der Universität Bayreuth hält auf seinen Webseite eine Menge an Unterrichtsmaterialien und Versuchsbeschreibungen für viele Themen bereit.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001233" }

  • Rechnen können mit GTR / CAS - Abituraufgabe 2c | A.29.03

    Alle Fragen dieser vermischten Aufgaben orientieren sich an häufig auftretenden Abituraufgaben. Man braucht: Nullstellen, Hoch- Tiefpunkte, eine Tangente, desweiteren taucht auf: ein Parallelogramm, eine Extremwertaufgabe und ein kleiner Frosch. Der Sinn ist auch hier alles möglichst schnell zu rechnen, also (fast) nur mit GTR/CAS, (fast) nichts von Hand.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009284" }

  • Reaktion von Aluminium mit Brom

    Der Bereich Didaktik der Chemie der Universität Bayreuth hält auf seinen Webseite eine Menge an Unterrichtsmaterialien und Versuchsbeschreibungen für viele Themen bereit.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00001257" }

  • Kubische Funktion, Wendepunkte kubischer Parabeln berechnen | A.05.04

    Den Wendepunkt einer Funktion erhält man, wenn man die zweite Ableitung Null setzt und nach „x“ auflöst. Den y-Wert erhält man, in dem man x in die Ausgangsgleichung f(x) einsetzt. (Normalerweise muss man den x-Wert auch noch in die dritte Ableitung einsetzen, aber bei kubischen Parabeln [Gleichungen dritten Grades] muss man das streng genommen nicht. Wenn man ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008562" }

  • Differentialgleichung: Was ist eine DGL und wie rechnet man damit? Beispiel 2 | A.30.02

    Eine Differenzialgleichung (kurz: DGL) ist eine Gleichung in welcher Ableitung und Funktion auftauchen. Eine DGL beschreibt daher einen Zusammenhang zwischen der Änderung des Bestands und dem Bestand selber.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009307" }

  • Polynome, Parabeln höherer Ordnung, ganzrationale Funktionen, Beispiel 2 | A.06.01

    „Polynome“ heißen auch „ganzrationale Funktionen“ oder „Parabeln höherer Ordnung“. Während man unter „Parabel“ normalerweise eine quadratische Parabel versteht (y=ax²+bx+c) versteht man unter einer „Parabel dritten Grades“ bzw. „Parabel dritter Ordnung“ eine Funktion mit x hoch 3 (y=ax³+bx²+cx+d). Mit „Parabel vierter Ordnung“ ist eine Funktion gemeint, in ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008586" }

  • Steigung berechnen im Steigungsdreieck über Steigungsformel, Beispiel 4 | A.01.02

    Die Steigung (heißt auch „Anstieg“) zwischen zwei Punkten bestimmt man mit der Steigungsformel (im Steigungsdreieck). Diese lautet: m=(y2–y1)/(x2–x1). Hierbei sind x1, x2, y1 und y2 natürlich die Koordinaten der beiden Punkte.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008313" }

  • Waagrechte Asymptote und schiefe Asymptote berechnen, Beispiel 2 | A.16.02

    Waagerechte Asymptoten bzw. schiefe Asymptoten erhält man, in dem man „x“ in der Funktion gegen + oder – unendlich streben lässt. Wie das im Detail geht, hängt vom Funktionstyp ab. (Siehe daher bitte auf Querverweise auf die verschiedenen Funktionen unter „verwandte Themen“).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008909" }

  • Logistisches Wachstum berechnen, Beispiel 2 | A.07.04

    Logistisches Wachstum beschreibt die meisten Wachstumsprozesse aus unserer Umwelt. Eigentlich wird fast jedes Wachstum welches irgendwie mit Lebewesen zu tun hat, durch logistisches Wachstum beschrieben. Das kann das Wachstum von Pflanzen sein, Bevölkerungswachstum, Entwicklung einer Population, etc.. Die Berechnung von logistischem Wachstum erfolgt über eine Tabelle und ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008619" }

  • Ortskurve, Ortslinie: was das ist und wie man damit rechnet, Beispiel 6 | A.24.01

    Ortskurven (oder Ortslinien) gibt es nur bei Funktionsscharen (also wenn noch ein Parameter in der Funktion mit auftaucht). Was sind Ortskurven überhaupt? Eine Funktionenschar besteht aus unendlich vielen Funktionen (für jeden Wert des Parameters gibt’s eine Funktion). Alle Hochpunkte dieser Funktionen liegen auf einer neuen Kurve, nämlich der Ortskurve der Hochpunkte. Das ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009139" }

Seite:
Zur ersten Seite Eine Seite zurück 2 3 4 5 6 7 8 9 10 11 12 13 Eine Seite vor Zur letzten Seite