Ergebnis der Suche (12)

Ergebnis der Suche nach: ( ( (Freitext: E-LEARNING) und (Systematikpfad: "MATHEMATISCH-NATURWISSENSCHAFTLICHE FÄCHER") ) und (Schlagwörter: ANALYSIS) ) und (Bildungsebene: "SEKUNDARSTUFE I")

Es wurden 1238 Einträge gefunden

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite

Treffer:
111 bis 120
  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 2 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009250" }

  • p-q-Formel, Mitternachtsformel, Beispiel 7 | A.12.05

    Die Mitternachtsformel (p-q-Formel oder pq Formel) wendet man bei quadratische Gleichungen an, wenn man also drei Terme hat: einen mit „x²“, einen mit „x“ und eine Zahl ohne „x“. Auf einer Seite der Gleichung muss „=0“ stehen.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008714" }

  • Mit der Kettenregel eine verkettete Funktion ableiten, Beispiel 4 | A.13.03

    Die Kettenregel wendet man an, wenn man verkettete Funktion hat bzw. wenn man irgendwelche sauschwierigen Klammern ableiten muss (z.B. Klammern mit Hochzahlen oder Klammern mit sin/cos, ). Die Hauptaussage der Kettenregel ist die, dass die innere Ableitung mit „Mal“ verbunden hinten angehängt werden muss.

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008779" }

  • Horner-Schema, Beispiel 3 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008743" }

  • Umkehrfunktion berechnen, Beispiel 1 | A.28.01

    Die Umkehrfunktion einer Funktion zu bestimmen, ist vom Prinzip her sehr einfach: Man löst die Funktion nach „x“ auf. Hat man das getan, kann man das bisherige „x“ nun „y“ nennen, das bisherige „y“ nennt man „x“ und ist fertig (=Variablentausch). Hier ein paar gängige Beispiele dazu. Streng genommen kann man nur dann eine Funktion umkehren, wenn die Funktionen ...

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009231" }

  • Normalform einer Parabel aus Linearfaktorform LFF bestimmen, Beispiel 1 | A.04.07

    Man kann aus der Linearfaktorform (LFF) der Parabel sehr einfach die Normalform erhalten. Man muss einfach nur die beiden Klammern auflösen (also alles ausmultiplizieren).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008487" }

  • Horner-Schema, Beispiel 6 | A.12.08

    Das Horner-Schema (oder Polynomdivision) wendet man an, falls weder Ausklammern, noch Substitution oder Mitternachtsformel funktionieren. Der große Nachteil vom Horner Schema ist, dass man bereits eine Nullstelle braucht, (die man eventuell durch Raten erhalten kann).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008746" }

  • Definitions- und Wertemenge der Umkehrfunktion bestimmen, Beispiel 3 | A.28.03

    Bei einer Funktion und einer Umkehrfunktion sind Definitionsmenge und Wertemenge einfach vertauscht. Die Definitionsmenge der Funktion ist die Wertemenge der Umkehrfunktion und umgekehrt. (Zur Erinnerung: eine Definitionsmenge besteht aus allen x-Werten, die man einsetzen darf, die Wertemenge sind alle y-Werte die bei einer Funktion rauskommen können.)

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009251" }

  • Wurzelfunktion: Wurzelgleichungen lösen, Beispiel 4 | A.45.05

    Wurzelgleichungen löst man zuerst nach der Wurzel auf. Danach sollte man quadrieren man und sollte nach „x“ auflösen können um so die Nullstelle zu erhalten. So weit die Theorie. Tja, die ein oder andere Gleichung ist vielleicht etwas komplizierter (nur minimal komplizierter).

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00009601" }

  • Mit der Quotientenregel eine Funktion mit einem Bruch ableiten | A.13.05

    Die Quotientenregel wendet man an, wenn man einen Bruch hat, in welchem sowohl oben als auch unten mindestens ein „x“ steht. Hat die Funktion die Form: f(x)=u/v, so hat die Ableitung die Form: f'(x)=(u'*v–u*v')/u²

    Details  
    { "LEARNLINE": "DE:SODIS:LEARNLINE-00008789" }

Seite:
Zur ersten Seite Eine Seite zurück 6 7 8 9 10 11 12 13 14 15 16 17 Eine Seite vor Zur letzten Seite